Repository Management with Nexus

Repository Management with Nexus

Ed. 4.0

Repository Management with Nexus

Contents

1 Introducing Nexus Repository Manager

2 Concepts

3 Installing and Running Nexus Repository Manager
4 Configuring Maven and Other Build Tools

5 Using the User Interface

6 Configuring Nexus Repository Manager

7 Smart Proxy

8 LDAP Integration

9 Atlassian Crowd Support

17

52

66

104

167

177

201

Repository Management with Nexus

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Procurement Suite

Improved Releases with Staging

Repository Health Check

Managing Maven Settings

OSGi Bundle Repositories

P2 Repositories

.NET Package Repositories with NuGet

Node Packaged Modules and npm Registries

Ruby, RubyGems and Gem Repositories

RPM Packages and YUM Repositories

Site Repositories

Repository Management Best Practises

Nexus Repository Manager Plugins

Migrating to Nexus Repository Manager

217

235

288

296

306

312

316

327

336

345

354

363

366

372

Repository Management with Nexus iv
24 Configuring Secure Socket Layer SSL 385
25 Evaluating Step by Step 394
26 Community 426
A Contributing to the Nexus Documentation 431
B Copyright 433

C Creative Commons License

435

Repository Management with Nexus

Preface

This book covers the concepts of repository management, software supply chain management and com-
ponent management in general and specifically the usage of Nexus Repository Manager OSS and Nexus
Repository Manager. It details all aspects of set-up and running a repository manager with the features of
the latest release version 2.12.1.

This book was last updated and published on 2016-03-16.

Repository Management with Nexus 1/440

Chapter 1

Introducing Nexus Repository Manager

1.1 Introduction

Nexus Repository Manager and Nexus Repository Manager OSS manage software components required
for development, deployment, and provisioning. If you develop software, the repository manager can help
you share those components with other developers and end users. It greatly simplifies the maintenance
of your own internal repositories and access to external repositories. With Nexus Repository Manager
and Nexus Repository Manager OSS you can completely control access to, and deployment of, every
component in your organization from a single location.

The repository manager is available in two editions:

* Nexus Repository Manager OSS

* Nexus Repository Manager

The basis of all versions is formed by Nexus Repository Manager OSS. It is licensed under the Eclipse
Public License version 1.0 and can be used to get started with component and repository management. It
provides a plugin infrastructure for all its features and supports numerous repository formats out of the
box.

Nexus Repository Manager builds on top of the numerous features of Nexus Repository Manager OSS

Repository Management with Nexus 2/440

and adds component information integration, improvements for the release process, improved LDAP
integration and other features typically required by enterprises and advanced users.

Integration of Nexus Repository Manager with the Nexus IQ Server makes your component manage-
ment policies and rules configurable and actionable and provides further automation and integration with
numerous tools to advanced users.

Upgrades from Nexus Repository Manager OSS can be easily performed. This makes Nexus Repository
Manager OSS an easy, yet powerful solution to get started with component and repository management.
Nexus Repository Manager adds further features as well as full support by Sonatype.

TIP
Check out Chapter 2 for more background on repository management in your software development
life cycle.

1.2 Nexus Repository Manager OSS

Nexus Repository Manager OSS provides you with an essential level of control over the external repos-
itories you use and the internal repositories you create. It provides infrastructure and services for orga-
nizations that use repository managers to obtain and deliver software. If you create software libraries or
applications for your end users, you can use Nexus Repository Manager OSS to distribute your software.
If your software depends on open source software components, you can cache software components from
remote repositories.

1.2.1 Features

Hosting Repositories
When you host a repository with Nexus Repository Manager OSS, you can upload components
using the interface, or you can deploy components to hosted repositories using a build tool. The
repository manager also creates the standard index for all of your hosted repositories, which will
allow tools to rapidly locate software components for your developers.

Proxy Remote Repositories
When you proxy a remote repository with Nexus Repository Manager OSS, you can control all
aspects of the connection to a remote repository, including security parameters, and HTTP proxy
settings. You can configure how long the repository managers stores components, and how it will
expire components which are no longer referenced by your build.

Repository Management with Nexus 3/440

Repository Groups
Grouping repositories allows you to consolidate multiple repositories into a single URL. This makes
configuring your development environment very easy. All of your developers can point to a single
repository group URL, and if anyone ever needs a custom remote repository added to the group,
you can do this in a central location without having to modify every developer’s workstation.

Numerous Repository Formats
The concepts of hosted repositories, proxy repositories and repository groups are supported for a
number of repository formats such as Maven 2, NuGet, NPM, RubyGems or YUM. This allows you
to facilitate one repository manager to bring the same advantages to all developers in a team relying
on different technologies and build tools including Apache Maven, Apache Ant with Apache Ivy
or Eclipse Aether, Gradle, SBT, .Net, Node.js, Ruby and many others.

Hosting Project Web Sites

The repository manager is a publishing destination for project web sites. While you very easily
generate a project web site with Maven, without Nexus Repository Manager OSS or Nexus Repos-
itory Manager, you will need to set up a WebDAV server and configure both your web server and
build with the appropriate security credentials. With the repository manager, you can deploy your
project’s web site to the same infrastructure that hosts the project’s build output. This single des-
tination for binaries and documentation helps to minimize the number of moving parts in your
development environment.

Fine-grained Security Model

Nexus Repository Manager OSS ships with a very capable and customizable security framework
that can be used to configure user interface as well as component access. Every operation is as-
sociated with a privilege, and privileges can be combined into standard roles. Users can then be
assigned both individual privileges and roles that can be applied globally or at a fine-grained level.
You can create custom administrative roles that limit certain repository actions, such as deployment
to specific groups of developers, and you can use these security roles to model the structure of your
organization.

Flexible LDAP Integration
If your organization uses an LDAP server, Nexus Repository Manager and Nexus Repository Man-
ager OSS can integrate with an external authentication and access control system. The repository
manager is smart enough to be able to automatically map LDAP groups to the appropriate roles,
and it also provides a very flexible facility for mapping existing users and existing roles to roles.

Component Search
Nexus Repository Manager OSS provides an intuitive search feature which allows you to search for
software components by identifiers, such as groupld, artifactld, version, classifier, and packaging,
names of classes contained in Java archives, keywords, and component shal checksums. In addition
the repository manager can automatically download the index from remote repositories. This allows
discovery of components available in these remote repositories without prior downloads.

Scheduled Tasks
Nexus Repository Manager OSS has the concept of scheduled tasks: periodic jobs which take care
of various repository management tasks, such as deleting old snapshots, evicting unused items, and
publishing repository indexes.

Repository Management with Nexus 4/440

REST Services

Nexus Repository Manager OSS is based on a series of REST services, and when you are using
the web front-end UI, you are really just interacting with a set of REST services. Because of this
open architecture, you can leverage the REST service to create custom interactions or to automate
repository management with your own scripts.

Integration with m2eclipse

1.3

When you use Nexus Repository Manager or Nexus Repository Manager OSS as a repository man-
ager it creates indexes that support the Maven integration for the Eclipse IDE -M2Eclipse. They
are immediately available to the project creation wizards and are included in search results in the
IDE and other operations with dependencies and plugins.

Nexus Repository Manager

Nexus Repository Manager is designed to meet the needs of the enterprise and builds upon solid foun-
dation and features provided by Nexus Repository Manager OSS. It acts as a central point of access to
external repositories and a central distribution point with the intelligence required to support the decision
that go into making quality software.

1.3.1

Rich

Features

Component Information

The Nexus IQ Data Services provide up-to-date and accurate information about known component
security vulnerabilities as well as license issues found by component source inspection. This in-
formation is available in Nexus Repository Manager and helps your users with their component
choice.

Staging Suite

When was the last time you did a software release to a production system? Did it involve a QA
team that had to sign off on a particular build? What was the process you used to re-deploy a
new build if QA found a problem with the system at the last minute? The Staging Suite provides
workflow support for the release process of binary software components. If you need to create a
release component and deploy it to a hosted repository, you can use the Staging Suite to post a
collection of related, staged components which can be tested, promoted, or discarded as a unit. The
repository manager keeps track of the individuals who are involved in a staged, managed release
and can be used to support the decisions that go into producing quality software.

Support for OSGi Repositories

Nexus Repository Manager adds support for OSGi Bundle repositories and P2 repositories for those

http://eclipse.org/m2e/

Repository Management with Nexus 5/440

developers who are targeting OSGi or the Eclipse platform. Just like you can proxy, host, and group
Maven 2, NuGet or NPM repositories with Nexus Repository Manager OSS, Nexus Repository
Manager allows you to do the same with OSGi repositories.

Enterprise LDAP Support

Nexus Repository Manager offers LDAP support features for enterprise LDAP deployments, in-
cluding detailed configuration of cache parameters, support for multiple LDAP servers and backup
mirrors, the ability to test user logins, support for common user/group mapping templates, and the
ability to support more than one schema across multiple servers.

Support for Atlassian Crowd

If your organization uses Atlassian Crowd, Nexus Repository Manager can delegate authentication
and access control to a Crowd server and map Crowd groups to the appropriate roles.

Maven Settings Management

Nexus Repository Manager along with the Nexus M2Settings Maven Plugin allows you to manage
Maven settings. Once you have developed a Maven Settings template, developers can then connect
to Nexus Repository Manager using the Nexus M2Settings Maven plugin which will take responsi-
bility for downloading a Maven settings file from the repository manager and replacing the existing
Maven settings on a local workstation.

Custom Repository Metadata

1.4

Nexus Repository Manager provides a facility for user-defined custom metadata. If you need to
keep track of custom attributes to support approval workflow or to associate custom identifiers
with software components, you can use the repository manager to define and manipulate custom
attributes which can be associated with components in a repository.

Nexus Repository Manager and Nexus IQ Server

Integration of Nexus Repository Manager with the Nexus IQ Server can be used to define component

usage

policies and automate the enforcement during the release process with the Staging Suite and display

application specific component information.

1.4.1

Features

Component Usage Policies

The Nexus IQ Server allows you to define component usage policies in terms of security vulnera-
bilities, license issues and many other characteristics of the used components.

Repository Management with Nexus 6 /440

Release Policy Enforcement
The Staging Suite can be configured to use application-specific policies for automated release vali-
dation.

Application Specific Component Information
The component information displayed in the Nexus Repository Manager can take the application-
specific policies of your organization into account and display the specific validation result to the
users.

Repository Management with Nexus 7 /440

Chapter 2

Concepts

Available in Nexus Repository Manager OSS and Nexus Repository Manager

2.1 Introduction

Using the Nexus Repository Manager or Nexus Repository Manager OSS as well as the tools for Software
Supply Chain Automation with the Nexus IQ Server and its integrations requires an understanding of a
few concepts and terms like Component, Repository, Repository Format and others. This chapter provides
you with all the necessary background and knowledge as well as an idea of a progression in your usage
of the tools.

2.2 The Basics - Components, Repositories and Repository For-
mats

Nexus Repository Manager, Nexus Repository Manager OSS and Nexus IQ Server are all about working
with components and repositories.

Repository Management with Nexus 8/440

So what are components? A component is a resource like a library or a framework that is used as part
of your software application at runtime, integration or unit test execution time or required as part of your
build process. It can also be an entire application or a static resource like an image without any dynamic
behaviour.

Typically these components are archives of a large variety of files including

* Java byte code in class files

C object files
* text files e.g. properties files, XML files, JavaScript code, HTML, CSS
* binary files such as images, PDF files, sound and music files

* and many others

The archives are using numerous formats such as

Java JAR, WAR, EAR formats
* plain ZIP or .tar.gz files
* Other package formats such as NuGet packages, Ruby gems, NPM packages

¢ Executable formats such as .exe or .sh files, Android APK files, various installer formats, ...

Components can be composed of multiple, nested components themselves. E.g., consider a Java web
application packaged as a WAR component. It contains a number of JAR components and a number of
JavaScript libraries. All of these are standalone components in other contexts and happen to be included
as part of the WAR component.

Components provide all the building blocks and features that allow a development team to create pow-
erful applications by assembling them and adding their own business related components to create a
full-fledged, powerful application.

In different toolchains components are called artifact, package, bundle, archive and other terms. The
concept and idea remains the same and component is used as the independent, generic term.

Components in Repositories A wide variety of components exists and more are continuously created by
the open source community as well as proprietary vendors. There are libraries and frameworks written

Repository Management with Nexus 9/440

in various languages on different platforms that are used for application development every day. It has
become a default pattern to build applications by combining the features of multiple components with
your own custom components containing your application code to create an application for a specific
domain.

In order to ease the consumption and usage of components, they are aggregated into collections of com-
ponents. These are called a repository and are typically available on the internet as a service. On different
platforms terms such as registry and others are used for the same concept.

Example for such repositories are

* the Central Repository, also known as Maven Central

the NuGet Gallery
* RubyGems.org

* npmjs.org

and a number of others. Components in these repositories are accessed by numerous tools including

* package managers like npm, nuget or gem,
* build tools such as Maven, Gradle, rake, grunt. ..

* IDE’s such as Eclipse, Intellil.. ..

and many, many others.

Repositories have Formats The different repositories use different technologies to store and expose the
components in them to client tools. This defines a repository format and as such is closely related to the
tools interacting with the repository.

E.g. the Maven repository format relies on a specific directory structure defined by the identifiers of the
components and a number of XML formatted files for metadata. Component interaction is performed via
plain HTTP commands and some additional custom interaction with the XML files.

Other repository formats use databases for storage and REST API interactions, or different directory
structures with format specific files for the metadata.

Repository Management with Nexus 10/ 440

2.3 An Example - Maven Repository Format

Maven developers are familiar with the concept of a repository, since repositories are used by default.
The primary type of a binary component in a Maven format repository is a JAR file containing Java byte-
code. This is due to the Java background of Maven and the fact that the default component type is a JAR.
Practically however, there is no limit to what type of component can be stored in a Maven repository.
For example, you can easily deploy WAR or EAR files, source archives, Flash libraries and applications,
Android archives or applications or Ruby libraries to a Maven repository.

Every software component is described by an XML document called a Project Object Model (POM).
This POM contains information that describes a project and lists a project’s dependencies — the binary
software components, which a given component depends upon for successful compilation or execution.

When Maven downloads a component like a dependency or a plugin from a repository, it also downloads
that component’s POM. Given a component’s POM, Maven can then download any other components
that are required by that component.

Maven and other tools, such as Ivy or Gradle, which interact with a Maven repository to search for binary
software components, model the projects they manage and retrieve software components on-demand from
a repository.

The Central Repository When you download and install Maven without any customization, it retrieves
components from the Central Repository. It serves millions of Maven users every single day. It is the
default, built-in repository using the Maven repository format and is managed by Sonatype. Statistics
about the size of the Central Repository are available at http://search.maven.org/#stats.

The Central Repository is the largest repository for Java-based components. It can be easily used from
other build tools as well. You can look at the Central Repository as an example of how Maven repositories
operate and how they are assembled. Here are some of the properties of release repositories such as the
Central Repository:

Component Metadata
All software components added to the Central Repository require proper metadata, including a
Project Object Model (POM) for each component that describes the component itself and any de-
pendencies that software component might have.

Release Stability
Once published to the Central Repository, a component and the metadata describing that compo-
nent never change. This property of a release repository like the Central Repository guarantees
that projects that depend on releases will be repeatable and stable over time. While new software

http://search.maven.org/#stats

Repository Management with Nexus 11/440

components are being published every day, once a component is assigned a release number on the
Central Repository, there is a strict policy against modifying the contents of a software component
after a release.

Component Security
The Central Repository contains cryptographic hashes and PGP signatures that can be used to verify
the authenticity and integrity of software components served and supports connections in a secure
manner via HTTPS.

Performance
The Central Repository is exposed to the users globally via a high performance content delivery
network of servers.

In addition to the Central Repository, there are a number of major organizations, such as Red Hat, Oracle
or the Apache Software foundation, which maintain separate, additional repositories. Best practice to
facilitate these available repositories is to install a Nexus Repository Manager and use it to proxy and
cache the contents on your own network.

Component Coordinates and the Repository Format Component coordinates create a unique iden-
tifier for a component. Maven coordinates use the following values: groupld, artifactld, version, and
packaging. This set of coordinates is often referred to as a GAV coordinate, which is short for Group, Ar-
tifact, Version coordinate. The GAV coordinate standard is the foundation for Maven’s ability to manage
dependencies. Four elements of this coordinate system are described below:

groupld
A group identifier groups a set of components into a logical group. Groups are often designed to
reflect the organization under which a particular software component is being produced. For exam-
ple, software components being produced by the Maven project at the Apache Software Foundation
are available under the groupld org.apache.maven.

artifactld
An artifactld is an identifier for a software component and should be a descriptive name. The
combination of groupld and artifactld must be unique for a specific project.

version
The version of a project ideally follows the established convention of semantic versioning. For ex-
ample, if your simple-library component has a major release version of 1, a minor release version of
2, and point release version of 3, your version would be 1.2.3. Versions can also have alphanumeric
qualifiers which are often used to denote release status. An example of such a qualifier would be
a version like "1.2.3-BETA" where BETA signals a stage of testing meaningful to consumers of a
software component.

packaging
Maven was initially created to handle JAR files, but a Maven repository is completely agnostic

http://semver.org

Repository Management with Nexus 12 /440

about the type of component it is managing. Packaging can be anything that describes any binary
software format including zip, nar, war, ear, sar, aar and others.

Tools designed to interact Maven repositories translate component coordinates into a URL which corre-
sponds to a location in a Maven repository. If a tool such as Maven is looking for version 1.2 .0 of the
commons—lang JAR in the group org. apache . commons, this request is translated into:

<repoURL>/org/apache/commons/commons—-lang/1.2.0/commons-lang-1.2.0.jar

Maven also downloads the corresponding POM for commons-lang 1.2.0 from:

<repoURL>/org/apache/commons/commons—lang/1.2.0/commons—lang—1.2.0.pom

This POM may contain references to other components, which are then retrieved from the same repository
using the same URL patterns.

Release and Snapshot Repositories A Maven repository stores two types of components: releases and
snapshots. Release repositories are for stable, static release components. Snapshot repositories are fre-
quently updated repositories that store binary software components from projects under constant devel-
opment.

While it is possible to create a repository which serves both release and snapshot components, repositories
are usually segmented into release or snapshot repositories serving different consumers and maintaining
different standards and procedures for deploying components. Much like the difference between a pro-
duction network and a staging network, a release repository is considered a production network and a
snapshot repository is more like a development or a testing network. While there is a higher level of
procedure and ceremony associated with deploying to a release repository, snapshot components can be
deployed and changed frequently without regard for stability and repeatability concerns.

The two types of components managed by a repository manager are:

Release

A release component is a component which was created by a specific, versioned release. For exam-
ple, consider the 1. 2. 0 release of the commons—1ang library stored in the Central Repository.
This release component, commons—-lang-1.2.0. jar, and the associated POM, commons-
lang-1.2.0.pom, are static objects which will never change in the Central Repository. Re-
leased components are considered to be solid, stable, and perpetual in order to guarantee that builds
which depend upon them are repeatable over time. The released JAR component is associated with
a PGP signature, an MD5 and SHA checksum which can be used to verify both the authenticity and
integrity of the binary software component.

Repository Management with Nexus 13/440

Snapshot

Snapshot components are components generated during the development of a software project. A
Snapshot component has both a version number suchas 1.3 .0 or 1. 3 and a timestamp in its name.
For example, a snapshot component for commons-1lang 1.3.0 might have the name comm
ons—-lang-1.3.0-20090314.182342-1. jar the associated POM, MD5 and SHA hashes
would also have a similar name. To facilitate collaboration during the development of software
components, Maven and other clients that know how to consume snapshot components from a
repository also know how to interrogate the metadata associated with a Snapshot component to
retrieve the latest version of a Snapshot dependency from a repository.

A project under active development produces snapshot components that change over time. A release is
comprised of components which will remain unchanged over time.

Looking at the Maven repository format and associated concepts and ideas allowed you grasp some of the
details and intricacies involved with different tools and repository formats, that will help you appreciate
the need for repository management.

2.4 Repository Management

The proliferation of different repository formats and tools accessing them as well as the emergence of
more publicly available repositories has triggered the need to manage access and usage of these reposito-
ries and the components they contain.

In addition, hosting your own private repositories for internal components has proven to be a very efficient
methodology to exchange components during all phases of the software development life cycle. It is
considered a best practice at this stage.

The task of managing all the repositories your development teams interact with can be supported by the
use of a dedicated server application - a repository manager.

Put simply, a repository manager provides two core features:

* the ability to proxy a remote repository and cache components saving both bandwidth and time required
to retrieve a software component from a remote repository repeatedly, and

* the ability the host a repository providing an organization with a deployment target for internal software
components.

Repository Management with Nexus 14 /440

Just as Source Code Management (SCM) tools are designed to manage source code, repository managers
have been designed to manage and track external dependencies and components generated by your build.

Repository managers are an essential part of any enterprise or open-source software development effort,
and they enable greater collaboration between developers and wider distribution of software, by facilitat-
ing the exchange and usage of binary components.

Once you start to rely on repositories, you realize how easy it is to add a dependency on an open source
software library available in a public repository, and you might start to wonder how you can provide a
similar level of convenience for your own developers. When you install a repository manager, you are
bringing the power of a repository like the Central Repository into your organization. You can use it
to proxy the Central Repositories and other repositories, and host your own repositories for internal and
external use.

Capabilities of a Repository Manager In addition to these two core features, a repository manager can
support the following use cases:

* allows you to manage binary software components through the software development lifecycle,
» search and catalogue software components,

* control component releases with rules and add automated notifications

* integrate with external security systems, such as LDAP or Atlassian Crowd

* manage component metadata

* host external components, not available in external repositories

* control access to components and repositories

* display component dependencies

* browse component archive contents

Advantages of Using a Repository Manager Using a repository manager provides a number of benefits
including:

* improved software build performance due to faster component download off the local repository man-
ager

* reduced bandwidth usage due to component caching

Repository Management with Nexus 15/440

* higher predictability and scalability due to limited dependency on external repositories
* increased understanding of component usage due to centralized storage of all used components

* simplified developer configuration due to central access configuration to remote repositories and com-
ponents on the repository manager

* unified method to provide components to consumers reducing complexity overheads

* improved collaboration due the simplified exchange of binary components

2.5 Software Supply Chain Automation

Once you adopting a repository manager as a central point of storage and exchange for all component
usage, the next step is expand its use in your efforts to automate and manage the software supply chain
throughout your software development lifecycle.

Modern software development practices have shifted dramatically from large efforts of writing new code
to the usage of components to assemble applications. This approach limits the amount of code authorship
to the business-specific aspects of your software.

A large number of open source components in the form of libraries, reusable widgets or whole applica-
tions, application servers and others are now available featuring very high levels of quality and feature
sets that could not be implemented as a side effect of your business application development. For example
creating a new web application framework and business workflow system just to create a website with a
publishing workflow would be extremely inefficient.

Development starts with the selection of suitable components for your projects based on comprehensive
information about the components and their characteristics e.g., in terms of licenses used or known se-
curity vulnerabilities available in Nexus Repository Manager. Besides focusing on being a repository
manager it includes features, such as the display of security vulnerabilities as well as license analysis
results within search results and the Repository Health Check reports for a proxy repository.

Software supply chain automation progresses through your daily development efforts, your continuous
integration builds and your release processes all the way to your applications deployed in production
environments at your clients or your own infrastructure.

Nexus 1Q Server provides a number of tools to improve your component usage in your software sup-
ply chain allowing you to automate your processes to ensure high quality output, while increasing your
development speed towards continuous deployment procedures. These include:

Repository Management with Nexus 16 /440

* integration with common development environments like the Eclipse IDE

* plugins for continuous integration servers such as Jenkins, Hudson or Eclipse
* visualizations in quality assurance tools like SonarQube

» command line tools for custom integrations

* notifications to monitor component flows

Nexus IQ Server enables you to ensure the integrity of the modern software supply chain, amplifying the
benefits of modern development facilitating component usage, while reducing associated risks.

Repository Management with Nexus 17 /440

Chapter 3

Installing and Running Nexus Reposi-
tory Manager

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

3.1 Prerequisites

Nexus Repository Manager only has one prerequisite, a Java Runtime Environment (JRE) compatible
with Java 7 or Java 8. Nexus Repository Manager and Nexus Repository Manager OSS is most often run
with the JRE that is bundled with a Java Development Kit (JDK) installation. The main supported Java
distribution is the Oracle version.

To download the Oracle JDK, go to http://www.oracle.com/technetwork/java/javase/downloads/index.html
. At a minimum Java 7u2 is required, but we recommend to use the latest available version.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Repository Management with Nexus 18 /440

3.2 Downloading

There are two distributions of the Nexus Repository Manager: Nexus Repository Manager OSS and
Nexus Repository Manager. Nexus Repository Manager OSS is a fully-featured repository manager
which can be freely used, customized, and distributed under the Eclipse Public License (EPL Version
1). Nexus Repository Manager is a distribution with features that are relevant to large enterprises and
organizations which require complex procurement and staging workflows in addition to more advanced
LDAP integration, Atlassian Crowd support, and other development infrastructure. The differences are
explored in Chapter 1.

3.2.1 Downloading Nexus Repository Manager OSS

To download the latest Nexus Repository Manager OSS distribution, go to http://www.sonatype.org/-
nexus/go and choose Nexus (TGZ) or Nexus (ZIP) shown in Figure 3.1. This will download a Gzip
TAR (TGZ) or a ZIP with identical contents. Your download will be file named nexus-2.12.1-01-
bundle.zipornexus-2.12.1-01-bundle.tar.gz.

0
o

Downloads Clear

nexus-pro-triakinstalier-2.10.0
_—_I -02.macos.dmg
=] 1203m8

Download Nexus 0SS
Download one of the following files.

NEXUS 0SS (TGD)

Checksums: MDS SHA Signature: PGP

Checksums: MD5 SHA Signature: PGP

Click here to dewnload archived Nexus
0SS versions.

Figure 3.1: Downloading Nexus Repository Manager OSS

Older versions can be downloaded following the link at the bottom of Figure 3.1 and selecting a version
and archive type in the page displayed in Figure 3.2.

http://nexus.sonatype.org/
http://links.sonatype.com/products/nexus/pro/home
http://www.sonatype.org/nexus/go
http://www.sonatype.org/nexus/go

Repository Management with Nexus 19/ 440

@ Download Archived Nexus Releases

This page lists archived Nexus releases.

If you are installing Nexus for the first time, we recommend using the latest version. Click here for the latest version of Nexus.

1 Select a Version 2 Download a Distribution

Click on the version number of the release you wish to download: Once you've selected a version in Step 1, you can download a
distribution from the following list.

Nexus 211.1-01 20141222 Download Nexus 2.11.1-01
Nexus 2.11.0 2014-12-01
Nexus 2.10.0-02 2014-10-06
Checksums: MD5 SHA Signature: PGP
Nexus 2.9.2 2014-09-25
Nexus 2.9.1 2014-09-04
Nexus 2.9.0 2014-08-11

Checksums: MD5 SHA Signature: PGP

Figure 3.2: Selecting a Specific Version of Nexus Repository Manager OSS to Download

3.2.2 Downloading Nexus Repository Manager

Nexus Repository Manager can be downloaded as zip or tar.gz archive from the Nexus Repository
Manager support download page. Existing customers with access to the support system can also download
it directly from the Nexus Repository Manager Support landing page.

Tip
Use the Nexus Repository Manager trial version for an evaluation.

3.3 Installing

The following instructions are for installing Nexus Repository Manager OSS or Nexus Repository Man-
ager as a stand-alone server. Nexus Repository Manager and Nexus Repository Manager OSS are bundled
with a Jetty instance that listens to all configured IP addresses on a host (0.0.0.0) and runs on port 8081
by default.

Installing the repository is straightforward. Unpack the web application archive in a directory. If you are
installing the repository manager on a local workstation to give it a test run, you can install it in your
home directory or wherever you like. Nexus Repository Manager and Nexus Repository Manager OSS
do not have any hard coded directories. It will run from any directory. If you downloaded the ZIP

http://links.sonatype.com/products/nexus/pro/download
http://links.sonatype.com/products/nexus/pro/download
http://links.sonatype.com/products/nexus/pro/support
http://www.sonatype.com/nexus/free-trial

Repository Management with Nexus 20/440

$ unzip nexus-2.12.1-01-bundle.zip

And, if you download the GZip’d TAR archive, run:

$ tar xvzf nexus-2.12.1-0l1-bundle.tar.gz

For Nexus Repository Manager the equivalent commands would be

$ unzip nexus-professional-2.12.1-01-bundle.zip
$ tar xvzf nexus-professional-2.12.1-0l-bundle.tar.gz

Caution

There are some known incompatibilities with the version of the tar command provided by Solaris
and the GZip TAR format. If you are installing Nexus Repository Manager on Solaris, you must
use the GNU tar application, or you will end up with corrupted files.

Note

If you are installing the repository manager on a server, you might want to use a directory other than your
home directory. On a Unix machine, this book assumes that it is installed in /usr/local/nexus-
2.12.1-01 with a symbolic link /usr/local/nexus to the nexus directory. Using a generic
symbolic link nexus to a specific version is a common practice which makes it easier to upgrade when
a newer version is made available.

sudo cp nexus-2.12.1-0l1-bundle.tar.gz /usr/local
cd /usr/local

sudo tar xvzf nexus-2.12.1-0l-bundle.tar.gz

sudo 1ln -s nexus-2.12.1-01 nexus

w4 A

Although it isn’t required to run, you may want to set an environment variable NEXUS_HOME in your
environment that points to the installation directory. This chapter will refer to this location as SNEXUS__
HOME.

Repository Management with Nexus 21/440

Note

On Windows you should install the repository manager outside Program Files to avoid problems
with Windows file registry virtualization. If you plan to run the repository manager as a specific user you
could install into the AppData\Local directory of that users home directory. Otherwise simply go
with e.g., C: \nexus or something similar.

The installation directory nexus-2.12.1-01 or nexus-professional-2.12.1-01 has a sib-
ling directory named sonatype—work. This directory contains all of the repository and configuration
data and is stored outside of the installation directory to make it easier to upgrade to a newer version.

By default, this directory is always a sibling to the installation directory. If you installed the repository
manager in the /usr/local directory it would also contain a sonatype-work subdirectory with
a nested nexus directory containing all of the content and configuration. The location of the sonat
ype—-work directory can be customized by altering the nexus-work property in SNEXUS_HOME /conf/
nexus.properties.

3.4 Upgrading

Since the repository manager separates its configuration and data storage from the application, it is easy
to upgrade an existing installation.

To upgrade the repository manager, unpack the archive in the directory that contains the existing instal-
lation. Once the archive is unpacked, the new application directory should be a sibling to your existing
sonatype-work/ directory.

If you have defined a symbolic link for the version of the repository manager to use, stop the server and
change that to point at the new application directory. When you start the new instance it will read the
existing repository configuration from the sonatype-work directory. Depending on the version you
upgrade from and to, some maintenance tasks like rebuilding the internal indices can be necessary. Please
refer to the upgrade notes of the new release for more information on this. In addition, a review of the
release notes can be very useful to get a better understanding of potential, additional steps required.

If you are using any additional plugins supplied by Sonatype, the new version you downloaded will
contain a newer version of the plugin. Be sure to copy the new version from the optional-plugins
folder to the plugin-repository folder, as documented in Section 22.1, and restart the repository
manager.

http://links.sonatype.com/products/nexus/oss/upgrading
http://links.sonatype.com/products/nexus/oss/release-notes

Repository Management with Nexus 22/440

Externally supplied plugins are updated by simply replacing the folder with the plugin with the new
version.

This automatic upgrade of the repository manager works for nearly all update ranges. All 2.x versions
can directly upgrade to the latest version. All 1.x version can upgrade to 2.7.x maximum. If you need to
upgrade from 1.x to a newer version, you need to perform an intermediate upgrade step to a 2.x version.

Note
The same upgrade process can be used to change from Nexus Repository Manager OSS to Nexus
Repository Manager.

3.5 Running

When you start the repository manager, you are starting a web server on the default port 0.0.0.0:
8081. It runs within a servlet container called Eclipse Jetty, and it is started with a native service wrapper
called the Tanuki Java Service Wrapper. This service wrapper can be configured to run the repository
manager as a Windows service or a Unix daemon. Nexus Repository Manager and Nexus Repository
Manager OSS ship with generic startup scripts for Unix-like platforms called nexus and for Windows
platforms called nexus .bat in the SNEXUS_HOME /bin folder. To start the repository manager on a
Unix-like platform like Linux, MacOSX or Solaris use

cd /usr/local/nexus
./bin/nexus console

Similarly, starting on Windows can be done with the nexus .bat file. Starting the repository manager
with the console command will leave it running in the current shell and display the log output.

On Unix systems, you can start the repository manager detached from the starting shell with the start
command even when not yet installed as a service.

./bin/nexus start

When executed you should see a feedback message and then you can follow the startup process viewing
the log file logs/wrapper . log changes.

Starting Nexus Repository Manager...
Started Nexus Repository Manager.
$ tail -f logs/wrapper.log

http://wrapper.tanukisoftware.org/doc/english/introduction.html

Repository Management with Nexus 23/440

At this point, the repository manager will be running and listening on all IP addresses (0.0.0.0) that are
configured for the current host on port 8081. To use the user interface, fire up a web browser and type in
the URL http://localhost:8081/nexus. You should see the user interface as displayed in Figure 3.7.

While we use Localhost throughout this book, you may need to use the IP Loopback Address of 127 .
0.0.1, the IP address or the DNS hostname assigned to the machine running the repository manager.

When first starting Nexus Repository Manager you are presented with a form that allows you to request
a trial activation. This page displayed in Figure 3.3 contains a link to the license activation screen in
Figure 3.4.

= Nexus Repository Manager

- - - = First name
Trial Activation

Just complete this brief form to

activate your trial. We'll email your = L2stname
license key and you'll be up and !
running in minutes. = Emnail

About Your Trial
Onee you activate yvour trial, it will be active * Qrganization
for 14 days, If you have any questions, or if
wou need o extend your trial, just email us
at info@sonalbype.cam.

= Country

Please select & country B
Region

Pleass select a region H

Figure 3.3: Trial Activation Form

After submitting the form for your trial activation, you will receive a license key via email that you can
use in the license activation screen to activate Nexus Repository Manager. If you already have a license
key or license file, you can use the same screen to upload the file and register your license.

You can activate Nexus Professional by entering your license key in

the field below or uploading a license file.

Your license key was sent to the email address provided when the trial license was
requested. If you do not have access to this email address, you can request a new
trial license. If more than 13 minutes has passed since submitting your license request
and you have not received your license key via email, please contact us,

Figure 3.4: License Activation

http://localhost:8081/nexus

Repository Management with Nexus 24 /440

Once you have agreed to the End User License Agreement you will be directed to the Nexus Repository
Manager Welcome screen displayed in Figure 3.5.

= Nexus Repository Manager w ..o

Sonatype™ @ Welcome
Artifact Search -
: L\ Nexus
Advanced Search
Views/Repositories - . .)
- Type in the name of a praject, class, or artifact into the text box below,
Repositories

and click Search, Use “Advanced Search™ an the left for more options.

Help - o

Username: admin
Password: admini23

Figure 3.5: Nexus Repository Manager Welcome Screen

Click on the Log In link in the upper right-hand corner of the web page, and you should see the login
dialog displayed in Figure 3.6.

Tip
The default administrator username and password combination is admin and adminl123.

Nexus Repository Manager Log In %

Usemame: |admin

Password: |--------|

LogIn

Figure 3.6: Log In Dialog (default login/password is admin/admin123)

When you are logged into your evaluation version of Nexus Repository Manager, you will see some help-
ful links to the Nexus Repository Manager Evaluation Guide, Sample Projects and the Knowledgebase
below the search input on the Welcome screen.

Repository Management with Nexus

25/440

With a full license for Nexus Repository Manager these links will be removed and you will get the

application window displayed in Figure 3.7.

Nexus Repository Manager OSS will not need to be activated with a license key and will display a number

of links to resources and support on the Welcome screen to logged in users.

= Nexus Repository Manager

Sonatype™ 3 Welcome

Artifact Search -

Views/Repositories -

Repositories Search” on the left for more options.

... 2| B Nexus Repository Manager

Type in the name of a project, class, or artifact into the text box below, and click Search. Use "Advanced

Help - ||

o

Figure 3.7: Application Window

The files from Java Service Wrapper used for the start up process can be found in $NEXUS_HOME /bin/
jsw and are separated into generic files like the wrapper . conf configuration file in conf and a number
of libraries in 1ib. An optional wrapper.conf include allows you to place further configuration

optionally in SNEXUS_HOME/conf/wrapper—-override.conf.

The platform-specific directories are available for backwards compatibility with older versions only and

should not be used. A full list of directories follows:

$ cd /usr/local/nexus/bin/jsw

$ 1s -1
conf
1lib
license

linux-ppc-64
linux-x86-32
linux—-x86-64
macosx—universal-32
macosx—-universal-64
solaris—-sparc-32
solaris—-sparc-64
solaris—-x86-32
windows—-x86-32

Repository Management with Nexus 26 /440

windows—-x86—-64

The wrapper.conf file is the central configuration file for the startup of the Jetty servlet container
running the repository manager on a Java virtual machine and therefore includes configuration for things
such as the java command to use, Java memory configuration, logging configuration and other settings
documented in the configuration file.

Typical modifications include adapting the maximum memory size to your server hardware and usage
requirements e.g. 2000 MB up from the default 768 and other JVM related configurations.

wrapper. java.maxmemory=2000

You can configure JSW to use a specific Java installation and not just the Java command found on the
PATH by setting JAVA_HOME in the wrapper . conf file and using it for the startup command.

set.JAVA_HOME=/opt/jdk1l.8.0_40/
wrapper. java.command=%JAVA_HOME%/bin/java

A typical use case is using a custom installation of the Oracle JDK instead of OpenJDK that is preinstalled
as part of the Linux distribution.

Additional configuration in the wrapper . conf file includes activation of further Jetty configuration file
for monitoring the repository manager via JMX or using HTTPS.

Tip
The startup script nexus supports the common service commands start, stop, restart, sta
tus, console and dump.

3.6 Post-Install Checklist

Nexus Repository Manager and Nexus Repository Manager OSS ship with some default passwords and
settings for repository indexing that need to be changed for your installation to be useful (and secure). Af-
ter installing and running the repository manager, you need to make sure that you complete the following
tasks:

Repository Management with Nexus 27 /440

3.6.1 Step 1: Change the Administrative Password and Email Address

The administrative password defaults to adminl23. The first thing you should do to your new installa-
tion is change this password. To change the administrative password, login as admin with the password
adminl23, and click on Change Password under the Security menu in the left-hand side of the browser
window. For more detailed instructions, see Section 5.16.

3.6.2 Step 2: Configure the SMTP Settings

The repository manager can send username and password recovery emails. To enable this feature, you
will need to configure a SMTP Host and Port as well as any necessary authentication parameters that
the repository manager needs to connect to the mail server. To configure the SMTP settings, follow the
instructions in Section 6.1.1.

3.6.3 Step 3: Configure Default HTTP and HTTPS Proxy Settings

In many deployments the internet, and therefore any remote repositories that the repository manager
needs to proxy, can only be reached via a HTTP and HTTPS proxy server internal to the deployment
company. In these cases the connection details to that proxy server need to be configured, as documented
in Section 6.1.5 in order for the repository manager to be able to proxy remote repositories at all.

3.6.4 Step 4: Enable Remote Index Downloads

Nexus Repository Manager and Nexus Repository Manager OSS ship with three important proxy repos-
itories for the Maven Central repository, Apache Snapshot repository, and the Codehaus Snapshot repos-
itory. Each of these repositories contains thousands (or tens of thousands) of components and it would
be impractical to download the entire contents of each. To that end, most repositories maintain an index
which catalogues the entire contents and provides for fast and efficient searching. The repository manager
uses these remote indexes to search for components, but we’ve disabled the index download as a default
setting. To download remote indexes:

1. Click on Repositories under the Views/Repositories menu in the left-hand side of the browser win-
dow.

Repository Management with Nexus 28 /440

2. Select each of the three proxy repositories and change Download Remote Indexes to true in the
Configuration tab. You’ll need to load the dialog shown in Figure 6.9 for each of the three reposi-
tories.

This will trigger the repository manager to re-index these repositories, during which the remote index
files will be downloaded. It might take a few minutes to download the entire index, but once you have it,
you’ll be able to search the entire contents of the Maven repository.

Once you’ve enabled remote index downloads, you still will not be able to browse the complete contents of
a remote repository. Downloading the remote index allows you to search for components in a repository,
but until you download those components from the remote repository they will not show in the repository
tree when you are browsing a repository. When browsing a repository, you will only be shown components
which have been downloaded from the remote repository.

3.6.5 Step 5: Change the Deployment Password

The deployment user’s password defaults to deployment123. Change this password to make sure that only
authorized developers can deploy components to your installation. To change the deployment password,
log in as an administrator. Click on Security to expand the security menu. When the menu appears, click
on Users. A list of users will appear. At that point, right-click on the user named Deployment and select
Set Password.

3.6.6 Step 6: If Necessary, Set the LANG Environment Variable

If your repository manager needs to store configuration and data using an international character set,
you should set the LANG environment variable. The Java Runtime will adapt to the value of the LANG
environment variable and ensure that configuration data is saved using the appropriate character type. If
you are starting the repository manager as a service, place this environment variable in the startup script
found in /etc/init.d/nexus.

3.6.7 Step 7: Configure Routes

A route defines patterns used to define and identify the repositories in which the components are searched
for. Typically, internal components are not available in the Central Repository or any other external,

Repository Management with Nexus 29/440

public repository. A route, as documented in Section 6.4, should be configured so that any requests for
internal components do not leak to external repositories.

3.7 Configuring Nexus Repository Manager as a Service

Available in Nexus Repository Manager OSS and Nexus Repository Manager

When installing Nexus Repository Manager or Nexus Repository Manager OSS for production usage you
should configure it to run as a service, so it starts back up after server reboots. It is good practice to run
that service or daemon as a specific user that has only the required access righs. The following sections
provide instructions for configuring the repository manager as a service or daemon on various operating
systems.

3.7.1 Running as a Service on Linux

You can configure the repository manager to start automatically by copying the nexus script to the /
etc/init.d directory. On a Linux system perform the following operations as the root user:

1. Create a nexus user with sufficient access rights to run the service
2. Copy $SNEXUS_HOME/bin/nexusto /etc/init.d/nexus

3. Make the /etc/init.d/nexus script executable and owned by the root user -

chmod 755 /etc/init.d/nexus
chown root /etc/init.d/nexus

4. Edit this script changing the following variables:

a. Change NEXUS_HOME to the absolute folder location (e.g., NEXUS_HOME="/usr/local/
nexus")

b. Setthe RUN_AS_USER to nexus or any other user with restricted rights that you want to use
to run the service. You should not be running the repository manager as root.

c. Change PIDDIR to a directory where this user has read/write permissions. In most Linux
distributions, /var/run is only writable by root. The property you need to add to customize
the PID file location is wrapper .pidfile. For more information about this property and
how it would be configured in wrapper.conf, see: http://wrapper.tanukisoftware.com/doc/-
english/properties.html.

http://wrapper.tanukisoftware.com/doc/english/properties.html
http://wrapper.tanukisoftware.com/doc/english/properties.html

Repository Management with Nexus 30/440

5. Change the owner and group of the directories used by the repository manager, including nexus—
work configured in nexus . properties defaulting to sonatype-work/nexus, to the nexus
user that will run the application.

6. If Java is not on the default path for the user running the repository manager, add a JAVA_HOME
variable which points to your local Java installation and add a $JAVA_HOME/bin to the PATH.

Warning

® We recommend to avoid running the repository manager as the root user or a similar priv-
ileged user, as this practice poses serious security risks to the host operating system unnec-
essarily. Instead we suggest to follow system administration best practice and use a service
specific user with the minimum required access rights only.

3.7.1.1 Run as a Service on Red Hat, Fedora, and CentOS

This script has the appropriate chkconfig directives, so all you need to do is to add the repository
manager as a service is run the following commands:

$ cd /etc/init.d

$ chkconfig —--add nexus

$ chkconfig —--levels 345 nexus on

$ service nexus start

Starting Nexus Repository Manager...

$ tail -f /usr/local/nexus/logs/wrapper.log

The second command adds nexus as a service to be started and stopped with the service command.
chkconfig manages the symbolic links in /etc/rc [0-6] . d which control the services to be started
and stopped when the operating system restarts or transitions between run-levels. The third command
adds nexus to run-levels 3, 4, and 5. The service command starts the repository manager, and the last
command tails the wrapper.log to verify that it has been started successfully. If the repository manager
has started successfully, you should see a message notifying you that it is listening for HTTP.

3.7.1.2 Runs as a Service on Ubuntu and Debian

The process for setting up the repository manager as a service on Ubuntu differs slightly from the process
used on a Red Hat variant. Instead of running chkconfig, you should run the following sequence of
commands once you’ve configured the startup scriptin /etc/init.d.

Repository Management with Nexus 31/440

$ cd /etc/init.d

$ update-rc.d nexus defaults

$ service nexus start

Starting Nexus Repository Manager...

$ tail -f /usr/local/nexus/logs/wrapper.log

3.7.2 Running as a Service on Mac OS X

The standard way to run a service on Mac OS X is by using launchd, which uses plist files for
configuration. An example plist file for the repository manager installed in /opt is shown A sample
com.sonatype.nexus.plist file.

A sample com.sonatype.nexus.plist file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>com.sonatype.nexus</string>
<key>ProgramArguments</key>
<array>
<string>/opt/nexus/bin/nexus</string>
<string>start</string>
</array>
<key>RunAtLoad</key>
<true/>
</dict>
</plist>

After saving the file as com.sonatype.nexus.plist in /Library/LaunchDaemons/ you
have to change the ownership and access rights.

sudo chown root:wheel /Library/LaunchDaemons/com.sonatype.nexus.plist
sudo chmod 644 /Library/LaunchDaemons/com.sonatype.nexus.plist

Tip
Consider setting up a different user to run the repository manager and adapt permissions and the
RUN_AS_USER setting in the nexus startup script.

Repository Management with Nexus 32/440

With this setup the repository managers, starts as a service at boot time. To manually start it after the
configuration you can use

sudo launchctl load /Library/LaunchDaemons/com.sonatype.nexus.plist

3.7.3 Running as a Service on Windows

The startup script for the repository manager on Windows platforms is bin/nexus.bat. Besides the
standard commands for starting and stopping the service, it has the additional commands install and
uninstall. Running these commands with elevated privileges will set up the service for you or remove
it as desired. Once installed as a service with the install command, the batch file can be used to start
and stop the service. In addition, the service will be available in the usual Windows service management
console as a service named nexus.

3.8 Running Behind a Reverse Proxy

Available in Nexus Repository Manager OSS and Nexus Repository Manager

Nexus Repository Manager is a sophisticated server application with a web-application user interface,
answering HTTP requests using the high-performance servlet container Eclipse Jetty.

Organizations are sometimes required to run applications like Nexus Repository Manager or Nexus
Repository Manager OSS behind a reverse proxy. Reasoning can include:

* security and auditing concerns

* network administrator familiarity

* organizational policy

* disparate application consolidation
* virtual hosting

* exposing applications on restricted ports

http://eclipse.org/jetty
https://en.wikipedia.org/wiki/Reverse_proxy

Repository Management with Nexus 33/440

e SSL termination

We provide some general guidance on how to configure common reverse proxy servers to work with
Nexus Repository Manager and Nexus Repository Manager OSS. Always consult your reverse proxy
administrator to ensure you configuration is secure.

There are two main settings of the repository manager, which can affect how reverse proxies interact.

3.8.1 Webapp Context Path

The repository manager webapp context path is /nexus by default. This means every URL path used to
access the repository manager must begin with /nexus.

In cases where the repository manager needs to be accessed at a different base path, through your reverse
proxy or directly, you must change the default path by editing a property value.

For example, to expose the repository manager in the root context (/) instead of /nexus/:

1. Edit SNEXUS_HOME/conf/nexus.properties. Change nexus-webapp-context-path=
/nexus to nexus—webapp-context-path=/

2. Restart the repository manager and verify that it is available on http://localhost:8081/
and no longer available at http://localhost:8081/nexus/.

3. Emails triggered by your repository manager may include absolute links back to the originating
server. As a matter of courtesy, set the Base URL as shown in Figure 6.4 under Application Server
Settings to the URL that will be externally available to your users e.g. http://repo.example.
com/.

3.8.2 Do Not Force Base URL

The Administration — Server — Application Server Settings configuration to Force Base URL feature.
The original use case for forcing base URL is no longer valid.

When enabled, the incoming request host and base path is ignored and the repository manager acts like it
is being accessed at the value of base URL.

Repository Management with Nexus 34 /440

Warning
Do not enable the Figure 6.4 Force Base URL unless explicitly advised by Sonatype - en-
abling this will most likely cause your repository manager to not work properly through a reverse

proxy.

3.8.3 Example: Reverse Proxy On Restricted Ports

Scenario: You need to expose the repository manager on restricted port 80. The repository manager
should not be run with the root user. Instead run your reverse proxy on the restricted port 80 and the
repository manager on the default port 8081. End users will access the repository manager using the
virtual host URL http://www.example.com/nexus instead of http://localhost:8081/
nexus.

Ensure your external host name (www . example.com) routes to your reverse proxy server.

Apache httpd

ProxyRequests Off
ProxyPreserveHost On

<VirtualHost =*:80>
ServerName www.example.com
ServerAdmin admin@example.com
ProxyPass /nexus http://localhost:8081/nexus
ProxyPassReverse /nexus http://localhost:8081/nexus
ErrorLog logs/www.example.com/nexus/error.log
CustomLog logs/www.example.com/nexus/access.log common
</VirtualHost>

nginx

http {

proxy_send_timeout 120;
proxy_read_timeout 300;

proxy_buffering off;
keepalive_timeout 5 5;
tcp_nodelay onj;
server

listen *:80;

Repository Management with Nexus 35/440

server_name www.example.com;

allow large uploads of files - refer to nginx documentation
client_max_body_size 1G

optimize downloading files larger than 1G - refer to nginx doc <>
before adjusting
#proxy_max_temp_file_size 2G

location /nexus {
proxy_pass http://localhost:8081/nexus;
proxy_set_header Host S$host;
proxy_set_header X-Real-IP Sremote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

3.8.4 Example: Reverse Proxy Virtual Host at Base Path

Scenario: You need to expose the repository manager using a custom host name of repo.example.
com on a restricted port at a base path of slash (/).

Ensure your external host name (repo.example.com) routes to your reverse proxy server and edit
the webapp path to be slash (/).

Apache httpd

ProxyRequests Off
ProxyPreserveHost On

<VirtualHost =%:80>

ServerName repo.example.com

ServerAdmin admin@example.com

ProxyPass / http://localhost:8081/

ProxyPassReverse / http://localhost:8081/

ErrorLog logs/repo.example.com/nexus/error.log

CustomLog logs/repo.example.com/nexus/access.log common
</VirtualHost>

nginx

Repository Management with Nexus 36 /440

http {

proxy_send_timeout 120;
proxy_read_timeout 300;

proxy_buffering off;
keepalive_timeout 5 5;
tcp_nodelay on;
server

listen *:80;
server_name repo.example.com;

allow large uploads of files - refer to nginx documentation
client_max_body_size 1G

optimize downloading files larger than 1G - refer to nginx doc <
before adjusting
#fproxy_max_temp_file_size 2G

location / {
proxy_pass http://localhost:8081/;
proxy_set_header Host S$host;
proxy_set_header X-Real-IP S$Sremote_addr;
proxy_set_header X-Forwarded-For S$proxy_add_x_forwarded_for;

3.8.5 Example: Reverse Proxy SSL Termination at Base Path

Scenario: Your organization has standardized on a reverse proxy to handle SSL certificates and termi-
nation. The reverse proxy virtual host will accept HTTPS requests on the standard port 443 and serve
content from the repository manager running on the default non-restricted HTTP port 8081 transparently
to end users.

Ensure your external host name (repo.example.com) routes to your reverse proxy server and edit
the webapp path to be slash (/).

To test your configuration, we offer a quick reference on how to generate self-signed SSL certificates for
Teverse proxy Servers.

Apache httpd Ensure Apache httpd is loading mod_ssl.

https://support.sonatype.com/entries/95353268-SSL-Self-Signed-Certificate-Guide

Repository Management with Nexus 37 /440

Listen 443

ProxyRequests Off
ProxyPreserveHost On

<VirtualHost *:443>
SSLEngine on

SSLCertificateFile "example.pemn"
SSLCertificateKeyFile "example.key"

ServerName repo.example.com

ServerAdmin admin@example.com

ProxyPass / http://localhost:8081/
ProxyPassReverse / http://localhost:8081/
RequestHeader set X-Forwarded-Proto "https"

ErrorLog logs/repo.example.com/nexus/error.log
CustomLog logs/repo.example.com/nexus/access.log common
</VirtualHost>

nginx Make sure nginx is compiled using the ——with-http_ssl_module option.

http {

proxy_send_timeout 120;
proxy_read_timeout 300;

proxy_buffering off;
keepalive_timeout 5 5;
tcp_nodelay on;
server {

listen *:443;
server_name repo.example.com;

allow large uploads of files - refer to nginx documentation
client_max_body_size 1G

optimize downloading files larger than 1G - refer to nginx doc <>
before adjusting
#proxy_max_temp_file_size 2G

ssl on
ssl_certificate example.pem;

ssl_certificate_key example.key;

location / {

Repository Management with Nexus 38/440

proxy_pass http://localhost:8081/;

proxy_set_header Host S$host;

proxy_set_header X-Real-IP S$Sremote_addr;

proxy_set_header X-Forwarded-For S$proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto "https";

Note

Reverse proxy configuration is going to vary and can get complex. Always consult the specific reverse
proxy product documentation. Apache httpd (mod_proxy, mod_ssl), nginx (ngx_http_proxy_module,
ssl compatibility)

3.9 Installing a Nexus Repository Manager License

Auvailable in Nexus Repository Manager only

When starting a Nexus Repository Manager trial installation you can upload your license file as described
in Section 3.5 on the license screen visible in Figure 3.4.

If you are currently using an evaluation license or need to replace your current license with a new one,
click on Licensing in the Administration menu. This will bring up the panel shown in Figure 3.8. To
upload your Nexus Repository Manager license, click on Browse. . ., select the file, and click on Upload.

http://httpd.apache.org
http://httpd.apache.org/docs/current/mod/mod_proxy.html
http://httpd.apache.org/docs/current/mod/mod_ssl.html
http://nginx.org/en/docs/
http://nginx.org/en/docs/http/ngx_http_proxy_module.html
http://nginx.org/en/docs/http/configuring_https_servers.html#compatibility

Repository Management with Nexus 39/440

Licensing

Install License

License Details

Compary: m—

Country: MNfA

Name: T

Email: T —. T

Effective Date: Thursday, July 26, 2012

Expiration Date: Friday, August 10, 2012

Licensa Type: Nexus Professional Edition

Licensed Connections: — o

Active Usars Repart | | Uninstal License |

Figure 3.8: Nexus Repository Manager Licensing Panel

Once you have selected a license and uploaded it to the repository manager, Nexus Repository Manager
will display a dialog box with the Nexus Repository Manager End User License Agreement as shown in
Figure 3.9. If you agree with the terms and conditions, click on "I Agree".

MNexus License Agreement o
Sonatype, Inc. m
END USER LICENSE AGREEMENT ("EULA") for SONATYPE™

NEXUS™

READ THIS AGREEMENT CAREFULLY.

B CLICKING ON THE 'T AGREE" BUTTON OR INSTALLING OR USING ALLOR
ANY PORTION OF THE SOFTWARE, YOU ARE ACCEPTING ALL OF THE

TERMS AND CONDHTIONS OF THIS AGREEMENT. YOU AGREE THAT THIS
AGREEMENT 1S ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED

AGREEMENT SIGNED BY YOU.

IF YOU DO NOT AGREE TO ALL OF THESE TERMS AND CONDITIONS, CLICK.

*1 DOW'T AGREE", YOU WILL NOT BE GIVEN ACCESS TO THE SOFTWARE
UMLESS ¥OU ACCEFT THE TERMS OF THIS AGREEMENT, IF YOU HAVE PAID

A LICENSE FEE FOR USE OF THE SOFTWARE AND DO NOT AGREE TO THESE
TERME, YOU MAY RETURN THE SOFTWARE FOR A FULL REFUND PROVIDED
YOU (A} DO NOT USE THE SOFTWARE AND (B) RETURN THE SOFTWARE
WITHIN THIRTY (30} DAYS OF YOUR INITIAL FURCHASE,

IF YOU WISH TO LSE THE SOFTWARE AS AN EMPLOYEE, CONTRACTOR, QR
AGENT OF A CORPORATION, PARTRERSHIP OR SIMILAR ENTITY, THEN YOLU
MUST BE AUTHORIZED TO SIGN FOR AND BIND THE ENTITY IN ORDER TO
ACCEPT THE TERMS OF THIS AGREEMENT. THE LICENSES GRANTED UNDER
THIS AGREEMENT ARE EXPRESSLY CONDITIONED UPON ACCEPTANCE BY
SUCH AUTHORIZED PERSOMNEL

IF YU HAVE ENTERED INTO A SEPARATE WRITTEN LICENEE AGREEMENT
WITH SONATYPE FOR USE OF THE SOFTWARE, THE TERMS AND
CONDITIONS OF SUCH OTHER AGREEMENT SHALL PREVAIL OVER ANY
CONFLICTING TERMS OR COMDITIONS IN THIS AGREEMENT,

This End User License { "} is between Sonatype, Inc.
{*Sanatype®) having its principal place of business at BID West Bl Caming
Rezal, Suite 400, Mourtain View, CA 94040 ard the customer (individual o |+
entity) that has procured the licensed Scftware (as defined below) for use | v

Iagree || IDon'tAgree |

Figure 3.9: Nexus Repository Manager End User License Agreement

Once you have agreed to the terms and conditions contained in the End User License Agreement, Nexus

Repository Management with Nexus 40/ 440

Repository Manager will then display a dialog box confirming the installation of a Nexus Repository
Manager license, as shown in Figure 3.10.

Upload Complete 2
\i‘) License upload finished successfully

()I(E

Figure 3.10: License Upload Finished Dialog

If you need to remove your Nexus Repository Manager license, you can click on the "Uninstall License"
button at the bottom of the Licensing Panel. Clicking on this button will show the dialog in Figure 3.11,
confirming that you want to uninstall a license.

Uninstall License? *

&2

Are you sure you want to uninstall the Nexus License?

Yes No

Figure 3.11: Uninstall License Confirmation Dialog

Clicking Yes in this dialog box will uninstall the license from Nexus Repository Manager and display
another dialog which confirms that the license has been successfully uninstalled.

Uninstall Complete *
i) License uninstall finished successfully

0K

Figure 3.12: License Uninstall Completed Dialog

Clicking on the Active Users Report button shows a list of I[P numbers that connected to the repository
manager in the last 7 days.

Repository Management with Nexus 41/440

3.9.1 License Expiration

When a Nexus Repository Manager license expires, the user interface will have all functionality disabled
except for the ability to install a new license file.

3.10 Directories

Available in Nexus Repository Manager OSS and Nexus Repository Manager

The following sections describe the various directories that are a part of any Nexus Repository Manager
and Nexus Repository Manager OSS installation. When you install Nexus Repository Manager OSS
or Nexus Repository Manager, you are creating two directories: a directory containing the runtime and
application often symlinked as nexus and a directory containing your own configuration and data -
sonatype-work/nexus. When you upgrade to a newer version of Nexus Repository Manager, you
replace the application directory and retain all of your own custom configuration and repository data in
sonatype-work/.

3.10.1 Sonatype Work Directory

The Sonatype Work directory sonatype-work is created as a sibling to the nexus application di-
rectory, and the location of this directory can be configured via the nexus.properties file which is
described in Section 3.10.2.

The Sonatype Work directory sonatype-work/nexus/ contains a number of subdirectories. De-
pending on the plugins installed and used, some directories may or may be not present in your installation:

access/
This directory contains a log of all IP addresses accessing the repository manager. The data can
be viewed by clicking on Active Users Report in the Administration - Licensing tab in the user
interface.

aether-local-repository/ or maven2-local-repository
This holds temporary files created when running Maven dependency queries in the user interface.

backup/
If you have configured a scheduled job to back up configuration, this directory is going to contain

Repository Management with Nexus 42 /440

a number of ZIP archives that contain snapshots of the configuration. Each ZIP file contains the
contents of the conf/ directory. (Automated backups are a feature of Nexus Repository Manager.)

broker/
The broker directory and its subdirectories contains the storage backend for the Smart Proxy mes-
saging component.

conf/
This directory contains the configuration. Settings that define the list of repositories, the logging
configuration, the staging and procurement configuration, and the security settings are all captured
in this directory.

conf/keystore/
Contains the automatically generated key used to identify this repository manager for Smart Proxy
usage

db/
Contains the database storing the User Token information, if that feature is enabled.

error-report-bundles/
Used to contain the bundled archives of data assembled for problem reporting. Since this feature
has been removed this folder can be safely deleted.

felix-cache/
This directory holds the cache for the OSGi framework Apache Felix, which is used for the reposi-
tory manager plugin architecture.

health-check/
Holds cached reports from the Repository Health Check plugin.

indexer/ and indexer-pro/
Contains an index for all repositories and repository groups managed by repository manager. An
index is a Lucene index which is the standard for indexing and searching a Maven repository. The
repository manager maintains a local index for all repositories, and can also download an index
from remote repositories.

logs/
The nexus.log file that contains information about a running instance of the repository manager.
This directory also contains archived copies of log files. Log files are rotated every day. To reclaim
disk space, you can delete old log files from the logs directory.

nuget/
Contains the database supporting queries against NuGet repositories used for .NET package sup-
port.

p2/
If you are using the P2 repository management features of Nexus Repository Manager, this directory
contains a local cache of P2 repository components.

Repository Management with Nexus 43 /440

plugin-repository/
This directory contains any additionally installed plugins from third parties as documented in Sec-
tion 22.1.

proxy/
Stores data about the files contained in a remote repository. Each proxy repository has a sub-
directory in the proxy/attributes/ directory and every file that the repository manager has
interacted with in the remote repository has an XML file that captures the last requested time stamp,
the remote URL for a particular file, the length of the file, the digests for a particular file, and others.
If you need to backup the local cached contents of a proxy repository, you should also back up the
contents of the proxy repository’s directory under proxy/attributes/

storage/
Stores components and metadata repositories. Each repository is a subdirectory that contains the
components in a repository. If the repository is a proxy repository, the storage directory will contain
locally cached components from the remote repository. If the repository is a hosted repository, the
storage directory will contain all components in the repository. If you need to back-up the contents
of a repository, you should back up the contents of the storage directory.

support/
The support zip archive documented in Section 5.15 is created and stored in this folder.

template-store/
Contains the Maven settings template files documented in detail in Chapter 13.

timeline/
Contains an index that the repository manager uses to store events and other information to support
internal operations. The user interface exposes this data with the system feeds.

tmp/
Folder used for temporary storage.

trash/
If you have configured scheduled jobs to remove snapshot components or to delete other informa-
tion from repositories, the deleted data will be stored in this directory. To empty this trash folder,
view a list of repositories, and then click on the Trash icon in the user interface.

The conf/ directory contains a number of files which allow for configuration and customization of the
repository manager. All of the files contained in this directory are altered by the administrative user
interface. While you can change the configuration settings contained in these files with a text editor,
Sonatype recommends that you modify the contents of these files using the administrative user interface.
Depending on your version of the repository manager and the installed plugins, the complete list of files
may differ slightly.

broker.groovy
A groovy script for configuring low-level properties for Smart Proxy.

Repository Management with Nexus 44/ 440

capabilities.xml
Further Smart Proxy backend configuration.

healthcheck.properties
Configuration for the Repository Health Check.

logback.properties, logback.xml and logback-*.xml
Contains logging configuration. If you need to customize the detail of log messages, the frequency
of log file rotation, or if you want to connect your own custom logging appenders, you should edit
the logback-nexus.xml configuration file as desired. If you find log4j.properties files as well, you
can safely remove them since they are remnants from an old version and are not used anymore.

Ivo-plugin.xml
Contains configuration for the latest version plugin. This XML file contains the location of the
properties file that the repository manager queries to check for a newer version.

nexus.xml
The bulk of the configuration is contained in this file. This file maintains a list of repositories and
all server-wide configuration like the SMTP settings, security realms, repository groups, targets,
path mappings and others.

pgp.xml
Contains PGP key server configuration.

nexus-obr-plugin.properties
Contains configuration for the Nexus OSGi Bundle repository plugin in Nexus Repository Manager.

procurement.xml
Contains configuration for the procurement plugin in Nexus Repository Manager.

security-configuration.xml
Contains global security configuration.

security.xml
Contains security configuration about users and roles.

staging.xml
Contains configuration for the Nexus Staging Plugin in Nexus Repository Manager.

3.10.2 Configuration Directory

After installing the repository manager and creating the nexus symlink as described earlier, your fnexus
folder contains another conf directory. This directory contains configuration for the Jetty servlet container.
You will only need to modify the files in this directory if you are customizing the configuration of Jetty
servlet container or the behavior of the scripts that start the repository manager.

Repository Management with Nexus 45 /440

The files and folders contained in this directory are:

nexus.properties
This file contains configuration variables which control the behavior of the repository manager and
the Jetty servlet container. If you are customizing the port and host that the repository manager
listens to, you change the application-port and application-host properties defined
in this file. If you want to customize the location of the sonatype-work directory, you modify
the value of the nexus-work property in this configuration file. Changing nexus-webapp-—
context-path allows you to configure the server context path the repository manager will be
available at.

jetty.xml and jetty-*.xml
Configuration files for the Eclipse Jetty servlet container running the repository manager. Jetty
users are used to providing a list of jetty XML config files which are merged to form the final
configuration. As an advanced configuration option, the repository manager supports this merging
concept in its launcher code as of version 2.8.

You can specify additional jetty XML configuration files to load to form the final configuration.
For the standard distribution bundle, these files can be specified using special properties located in
NEXUS_HOME/bin/jsw/conf/wrapper.conf.

wrapper.app.parameter.l=./conf/jetty.xml
wrapper.app.parameter.2=./conf/jetty-requestlog.xml
add more indexed app parameters...

Any of the files located at NEXUS_HOME/conf/jetty—+.xml can be specified as part of the
wrapper.app.parameter.n property, where n is the next highest number not already used.
The Java Service Wrapper documentation contains more information about this property. This
setup allows for a simple method to add configuration for https, JMX and others by adjusting a few
properties.

Warning

Versions of Nexus Repository Manager and Nexus Repository Manager OSS prior to 2.8 loaded
all of the Jetty configuration from one jetty.xml file, typically found at NEXUS_HOME/conf/
jetty.xml and required modifications to this file for configuration changes. Examples were
available in NEXUS_HOME /conf/examples. These files cannot be used in version 2.8 or
higher, as they were intended to be standalone files that could not be merged into other files.

http://wrapper.tanukisoftware.com/doc/english/prop-app-parameter-n.html

Repository Management with Nexus 46 /440

3.11 Monitoring

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

Now that your repository manager instance is up and running, you need to ensure that it stays that way.
Typically this is done on a number of levels and each organization and system administration team has its
own preferences and tools.

In general you can monitor:

* hardware values like CPU, memory or diskspace utilization and many more
* operating system level values like processes running
* Java Virtual Machine specific values

* application specific value

For the hardware and operating system values, a large number of dedicated tools exist. Many of these
tools can be configured to work with application-specific logs and other events. The following section
discusses some of the available information in the repositiory manager. It can potentially be integrated
into the usage of the more generic tools for monitoring, log capturing and analysis.

A host of information from the operating system, the Java Virtual Machine and the application itself is
available via the Support Tools, which allow you to inspect the value directly in the user interface.

3.11.1 General Logging

The repository manager logs events in the sonatype-work/nexus/logs/nexus.log file. In
addition a dedicated user interface to configure and inspect the log is available. Further information about
this interface can be found in Section 6.10.

3.11.2 Request Access Logging

Logging all access requests to the repository manager allows you to gain a good understanding of the
usage in your organization and the sources of these requests.

Repository Management with Nexus 47/ 440

For example, you will be able to tell if the main load is due to a CI server cluster or from your developers,
based on the IP numbers of the requests. You can also see the spread or requests and load across different
time zones. Also available for review are the URLs , API calls, and features that are used in the repository
manager.

Requests access logging is enabled by default in version 2.8 or higher and uses a performant and flexible
LogBack implementation with built-in log rotation already configured for 90 days of log file retention.
The log is written to the file sonatype-work/nexus/logs/request.log and contains all re-
quests and the username for authenticated requests.

The configuration is located in NEXUS_HOME /conf/logback-access.xml and can be changed to
suit your requirements. If you change the file, a restart of the repository manager is required for these
changes to take effect.

If you do not want to run access logging, you can disable it by commenting out the line

wrapper.app.parameter.2=conf/jetty-requestlog.xml

inbin/jsw/conf/wrapper.conf.

Warning

Older versions of Nexus Repository Manager and Nexus Repository Manager OSS require
different customization of the Jetty configuration files. Instructions for these customizations can
be found on the support site.

3.11.3 Using Java Management Extension JMX

JMX is a common tool for managing and monitoring Java applications with client software like the free
Visual VM and many others available. It can be performed locally on the server as well as remotely.

The repository manager can be configured to support JIMX by adding

wrapper.app.parameter.3=./conf/jetty-jmx.xml

to the list of wrapper . app parameters in NEXUS_HOME /bin/jsw/conf/wrapper.conf and set
the parameters jmx—-host and jmx-port in NEXUS_HOME/conf/nexus.properties.

https://support.sonatype.com/entries/21902551
http://visualvm.java.net/

Repository Management with Nexus

Jjmx-host=192.168.10.12
Jjmx-port=1099

jmx—host is the host name,

or commonly the IP address, to remotely monitor the application using
JMX from another host and jmx—-port is the network port used for the connection. It is important to
ensure that the port is not blocked by any network setup, when connecting remotely. The value of 1099 is

the default port used for JMX, but any other available port can be used as well.

Warning

Versions older than 2.8 require different procedures, depending on the specific version.

Once the repository manager is restarted with JMX enabled you can inspect the running JVM in detail.
Figure 3.13 and Figure 3.14 show some example screenshots of VisualVM connected to a repository

manager instance running on localhost.

8o0e
o & i

VisualVM 1.3.7 o

i B

Applican... @ |[SOR|
v [Lacal
¥ Wisualit

& Remate
155 wM Coredump
L&) Snapshots

e Y -

1] = org.sonatype.nexus.bootstrap.jsw.JswLauncher (pid 82432}

DT B Monitor | [Threads | o Sampler (5 Profiler |

Ouervitw ™ Saved data (& Detalls

PID; 82432

Host: localhost

Main class: arg.s onalype.nexus bootsirap jsw, JswLauncher
Arguments: . Jconfjetty,xml jconf/jetry-requesting.eml | confijetty-jmeml

IVM: Java HotSpot(TM) G4-Bit Server WM (24.51-b03, mixed mode)

Jawa: version 1.7.0_51, vendor Oracle Corparation

Java Home: JLibraryJava/lavavirtualMachines /jdk 1 7.0_5 1 jdk/ Contents (Home/jre
IVM Flags: <nones

Heap dump on OOME: disabled

Saved data ®| J¥M arguments | System propertics x
Thread Dumps: O =XX:MaxPermsize=192m
Heap Dumps: 0 -DjavanevpreferiPyaStack=true
Profiler Snapshaots: 0 -Deom.sun jndildap.connect.pool protocol=plain sl
=Xms256m
~Xmx768m
-Djavalibrary.path=bin/jsw/lib

Figure 3.13: Overview

of Nexus Repository Manager Monitored via JMX in VisualVM

Repository Management with Nexus

49 /440

800 WisualVM 1.3.7 A
=B s EDE
Anatcat © BEIREIRMNEN & orv: woresaercesesunsmamweta meter 5133930 ©
¥ B Local | Overview E@ = Threads | Jo Sampler (5 Profiler |
& WEualvM
Z org.sonatype.nexus.bootstrap,jsw.)swLauncher (pid 82432)
& Remora Mornitor o cru @ Memary o Classes (¥ Threads
[vM Coredump
L5l snapshots Uptime: 18 min 02 sec Ferform GE Heap Dump
CPU » |§_H_g.gpj| PermGen x|
CPU usage: 0L7% GC activity: 0.0% Size; 354 4186888 Used; 140,447 3288
100%] Max: 805,306 368 B
S5 250 ME- 4“' =
HA—1—1
-
1:45 PM 150 PM 140 FM 1:45 M L:50 PM
T CPU usage WCC activity M Heap size W Used heap
Classes 5 Threads ®
Total loaded; 19,440 Shared loaded; O Live; 92 Daeman; 59
Total unloaded: 0 Shared unloaded: 0 Live peak: 101 Total started: 132
20,000 1004
10,000 50
n - - 04 L] -
140 PM 145 PM 150 PM 140 P I 150 M
D Total loaded classes B Shared loaded classes d Live threads 8 Daemon threads

Figure 3.14: CPU, Memory and Other Visualizations of Nexus Repository Manager Monitored via JMX

in VisualVM

Depending on the tool used to connect, a number of monitoring, analysis and troubleshooting actions can

be performed. Please refer to the documentation about your specific tool for more information.

3.11.4 Analytics

The analytics integration of Nexus Repository Manager allows you to gather a good understanding of your
usage, since it enables the collection of event data in the repository manager. It collects non-sensitive
information about how you are using the repository manager. It is useful to you from a compatibility
perspective, since it gathers answers to questions such as what features are most important, where are
users having difficulties, and what integrations/APIs are actively in use.

The collected information is limited to the use of the user interface and the REST API, the primary inter-
action points between your environment and the repository manager. Only the user interface navigation
flows and REST endpoints being called are recorded. None of the request specific data (e.g., credentials
or otherwise sensitive information) is ever captured.

You can enable the event logging in the Settings section of the Analytics tab available via Analytics menu

Repository Management with Nexus 50/ 440

item in the Administration menu in the left side navigation. Select the checkbox beside Enable analytics
event collection and press the Save button.

You can choose to provide this data automatically to Sonatype by selecting the checkbox beside Enable
automatic analytics event submission. It enables Sonatype to tailor the ongoing development of the prod-
uct. Alternatively, you can submit the data manually or just use the gathered data for your own analysis
only.

Once enabled all events logged can be inspected in the Events tab in the Analytics section displayed in
Figure 3.15.

Welcome Analytics *

Analytics helps Sonatype make Nexus better by capturing key anonymeous usage details and metrics.

Settings Events

‘?chfrcsh @ Clear Export [)F]Subm'rt

Type Timestar_Export and download event data Adttributes
=) REST 1367253226750510000 admin ui=true, duration=3817000, status=20(
H | g REST 1387253233427753000 admin ui=true, duration=254518000, status=2
® (@) REST 1387253242083763000 admin ui=true, duration=4546000, status=20(
= () REST 1397253243805733000 admin ui=true, duration=73205000, status=2(
=) REST 1367253248104543000 admin ui=true, duration=54382000, status=2(

Figure 3.15: List of Events in the Analytics Tab

The list of events shows the Type and the Timestamp of the event as well as the User that triggered it and
any Attributes. Each row has a + symbol in the first column that allows you to expand the row verti-
cally. Each attribute will be expanded into a separate line allowing you to inspect all the information that
is potentially submitted to Sonatype. The User value is replaced by a salted hash so that no username
information is transmitted. The Anonymization Salt is automatically randomly generated by the repos-
itory manager and can optionally be configured in the Analytics: Collection capability manually. This
administration area can additionally be used to change the random identifier for the repository manager
instance.

Tip
More information about capabilities can be found in Section 6.6.

Repository Management with Nexus 51/440

If you desire to further inspect the data that is potentially submitted, you can select to download the
file containing the JSON files in a zip archive by clicking the Export button above the events list and
downloading the file. The Submit button can be used to manually submit the events to Sonatype.

When you select to automatically submit the analytics data, a scheduled task, named Automatically sub-
mit analytics events, is automatically created. This task is preconfigured to run at 1:00 AM every day.
If desired the recurrence can be changed in the scheduled tasks administration area documented in Sec-
tion 6.5.

Important

@ Sonatype values your input greatly and hopes you will activate the analytics feature and the au-
tomatic submission to allow us to ensure ongoing development is well aligned with your needs.
In addition, we appreciate any further direct contact and feedback in person and look forward to
hearing from you.

Repository Management with Nexus 52 /440

Chapter 4

Configuring Maven and Other Build Tools

Available in Nexus Repository Manager OSS and Nexus Repository Manager

4.1 Introduction

Historically Nexus Repository Manager and Nexus Repository Manager OSS started as a repository man-
ager supporting the Maven repository format. While it supports many other repository formats now, the
Maven repository format is still the most common and well supported format for build and provisioning
tools running on the JVM and beyond.

This chapter shows example configurations for using the repository manager with Apache Maven and a
number of other tools. The setups take advantage of merging many repositories and exposing them via
a repository group. Setting this up is documented in the chapter in addition to the configuration used by
specific tools.

Repository Management with Nexus 53 /440

4.2 Apache Maven

To use Nexus Repository Manager and Nexus Repository Manager OSS with Apache Maven, we con-
figure Maven to check the repository manager instead of the default, built-in connection to the Central
Repository.

To do this, you add a mirror configuration and override the default configuration for the central
repository in your ~/ .m2/settings.xml as shown in Configuring Maven to Use a Single Repository
Group.

Configuring Maven to Use a Single Repository Group

<settings>
<mirrors>
<mirror>
<!-—-This sends everything else to /public —->
<id>nexus</id>
<mirrorOf>x</mirrorOf>
<url>http://localhost:8081/nexus/content/groups/public</url>
</mirror>
</mirrors>
<profiles>
<profile>
<id>nexus</id>
<!--Enable snapshots for the built in central repo to direct -->
<!--all requests to nexus via the mirror —--—>
<repositories>
<repository>
<id>central</id>
<url>http://central</url>
<releases><enabled>true</enabled></releases>
<snapshots><enabled>true</enabled></snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>central</id>
<url>http://central</url>
<releases><enabled>true</enabled></releases>
<snapshots><enabled>true</enabled></snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>
<activeProfiles>
<!--make the profile active all the time —--—>

http://maven.apache.org/

Repository Management with Nexus 54 /440

<activeProfile>nexus</activeProfile>
</activeProfiles>
</settings>

In Configuring Maven to Use a Single Repository Group, we have defined a single profile called nexus.
It configures a repositoryandapluginRepository withtheid central that overrides the same
repositories in the super pom. The super pom is internal to every Apache Maven install and establishes
default values. These overrides are important since they change the repositories by enabling snapshots
and replacing the URL with a bogus URL. This URL is overridden by the mirror setting in the same
settings.xml file to point to the URL of your single repository group. This group can, therefore, contain
release as well as snapshot components and Maven will pick them up.

The mirrorOf pattern of » causes any repository request to be redirected to this mirror and to your
single repository group, which in the example is the public group.

It is possible to use other patterns in the mirrorOf field. A possible valuable setting is to use external :
x. This matches all repositories except those using 1ocalhost or file based repositories. This is used in
conjunction with a repository manager when you want to exclude redirecting repositories that are defined
for integration testing. The integration test runs for Apache Maven itself require this setting.

More documentation about mirror settings can be found in the mini guide on the Maven web site.

As alast configuration the nexus profile is listed as an active profile in the act iveProfiles element.

4.3 Adding Repositories for Missing Dependencies

If you’ve configured your Maven settings.xml or other build tool configuration to use the public
repository group as a mirror for all repositories, you might encounter projects that are unable to retrieve
components from your local repository manager installation.

This usually happens because you are trying to build a project that has defined a custom set of repos-
itories and snapshot repositories or relies on the content of other publically available repositories in its
configuration. When you encounter such a project all you have to do is

* add this repository to your repository manager as a new proxy repository

¢ and then add the new proxy repository to the public group.

http://maven.apache.org/guides/mini/guide-mirror-settings.html

Repository Management with Nexus 557440

The advantage of this approach is that no configuration change on the build tool side is necessary at all.

4.4 Adding a New Repository

To add a repository, log in as an administrator, and click on the Repositories link in the left-hand naviga-
tion menu in the Views/Repositories section as displayed in Figure 4.1.

Clicking on this link should bring up a window that lists all the configured repositories. You’ll then
want to create a new proxy repository. To do this, click on the Add link that is directly above the list
of repositories. When you click the Add button, click the down arrow directly to the right of the word
Add, this will show a drop-down which has the options: Hosted Repository, Proxy Repository, Virtual
Repository, and Repository Group. Since you are creating a proxy repository, click on Proxy Repository.

Welcome Repaositories x

%2 Refresh | () Add...» | @ Delete {5 Trash..» [User Managed Repositories~

Repository Hosted Repository Health Check Format Policy Repository
Public Repi Proxy Repository C e) mavenz2

3rd party Virual Repository B @) maven2 Release In Service
Apache 5ng Repository Group i E] mavenz2 Snapshot In Service
Central proxy ' 100 Q 107 mawven2 Release In Service
Central M1 shadow virtual i E) maven1 Release In Service
Codehaus Snapshots proxy i E) mavenz2 Snapshot In Service

Figure 4.1: Creating a New Proxy Repository

Once you do this, you will see a screen resembling Figure 4.2. Populate the required fields Repository ID
and the Repository Name. The Repository ID will be part of the URL used to access the repository, so
it is recommended to avoid characters that could cause problems there or on the filesystem storage. It is
best to stick with lowercase alphanumerics. Set the Repository Policy to Release, and the Remote Storage
Location to the public URL of the repository you want to proxy.

Repository Management with Nexus 56 /440

Welcome Repositories %
“Z Refresh () Add...~ (©) Delete [Trash...~ ([User Managed Repositories +

Repository -« Type Health Check Format Policy Repository Status
MNew Proxy Repository proxy L]

Public Repositories group r o maven2

3rd party hosted L -] mavenz Release In Service

MNew Proxy Repository

Repository ID jboss-releases

Repository Name JBoss Releases

Repository Type

Provider Maven2 R
Format

Repaository Policy Release R

Default Local Storage Location
Owverride Local Storage Location

« | Remote Repository Access

Remote Storage Location http://repository. jboss.org/nexus/content/ repositories/ releases/
Download Remote Indexes True 7
Save Cancel

Figure 4.2: Configuring a Proxy Repository

Once you’ve filled out this screen, click on the Save button. The repository manager is now configured to
proxy the repository. If the remote repository contains snapshots as well as release components, you will
need to repeat the process creating a second proxy repository and setting the policy to Snapshots.

4.5 Adding a Repository to a Group

Next you will need to add the new repositories to the Public Repositories repository group. To do this,
click on the Repositories link in the left-hand main menu in the Views/Repositories section. The repository
manager lists Groups and Repositories in the same list so click on the public group. After clicking on the
Public Repositories group, you should see the Browse and Configuration tabs in the lower half of the user
interface.

Repository Management with Nexus 57 /440

Note

If you click on a repository or a group in the Repositories list and you do not see the Configuration tab,
this is because your user account does not have administrative privileges. To perform the configuration
tasks outlined in this chapter, you will need to be logged in as a user with administrative privileges.

Clicking on the Configuration tab will bring up a screen which looks like Figure 4.3.

Welcome Repositories L
“ZRefresh| () Add...~ (@ Delete [Trash...~ [["|User Managed Repositories ~

Repository « Type Health Check Format Policy Repository Status
Public Reposito... group r 3] mavenz

3rd party hosted (. 0 mavenz Release In Service
Mpache Snapshots proxy r 0 mavenz Snapshot In Service
Public Repositories

Browse Index Browse Storage | Cenfiguration Routing Smart Proxy

Group ID
Group Name Public Repaositories
Provider R4
Format
Publish URL True R
Ordered Group Repositories Available Repositories
ﬂ Releases 5 Apache Snapshots
=] Snapshats =] Codehaus Snapshots
ﬂ 3rd party :_:] JBoss Releases
=] Gentral
4
I4
4
4]
Save Reset

Figure 4.3: Adding New Repositories to a Repository Group

To add the new repository to the public group, find the repository in the Available Repositories list on the
right, click on the repository you want to add and drag it to the left to the Ordered Group Repositories
list. Once the repository is in the Ordered Group Repositories list you can click and drag the repository
within that list to alter the order in which a repository will be searched for a matching component.

Repository Management with Nexus 58 /440

Note

The repository manager user interface makes use of the Javascript widget library ExtJS. ExtJS provides
for a number of Ul widgets that allow for rich interaction like the drag-drop Ul for adding repositories to
a group and reordering the contents of a group.

In the last few sections, you learned how to add a new custom repositories to a build in order to download
components that are not available in the Central Repository.

If you were not using a repository manager, you would have added these repositories to the repository
element of your project’s POM, or you would have asked all of your developers to modify ~/.m2/
settings.xml to reference two new repositories. Instead, you used the repository manager to add
the two repositories to the public group. If all of the developers are configured to point to the public
repository group, you can freely swap in new repositories without asking your developers to change
local configuration, and you’ve gained a certain amount of control over which repositories are made
available to your development team. In addition the performance of the component resolving across
multiple repositories will be handled by repository manager and therefore be much faster than client side
resolution done by Maven each time.

4.6 Apache Ant and Apache lvy

Apache Ivy is a dependency manager often used in Apache Ant builds. It supports the Maven repository
format and can be configured to download dependencies that can be declared in the ivy . xml file. This
configuration can be contained in the ivysettings.xml. A minimal example for resolving depen-
dencies from a repository manager running on localhost is shown in Minimal Apache Ivy Settings.

Minimal Apache Ivy Settings

<ivysettings>
<settings defaultResolver="nexus"/>
<property name="nexus-public"
value="http://localhost:8081/nexus/content/groups/ <

public"/>
<resolvers>
<ibiblio name="nexus" m2compatible="true" root="${nexus-public}"/>
</resolvers>
</ivysettings>

These minimal settings allow the ivy: retrieve task to download the declared dependencies.

http://extjs.com/
http://ant.apache.org/ivy/

Repository Management with Nexus 59 /440

To deploy build outputs to a repository with the ivy :publish task, user credentials and the URL of
the target repository have to be added to ivysettings.xml and the makepom and publish tasks have
to be configured and invoked.

Full example projects can be found in the ant-ivy folder of the documentation examples project. A
full build of the simple-project, including downloading the declared dependencies and uploading
the build output to the repository manager can be invoked with

cd ant-ivy/simple-project
ant deploy

Further details about using these example projects can be found in Chapter 25.

4.7 Apache Ant and Eclipse Aether

Eclipse Aether is the dependency management component used in Apache Maven 3+. The project pro-
vides Ant tasks that can be configured to download dependencies that can be declared in pom.xml file
or in the Ant build file directly.

This configuration can be contained in your Ant build.xml or a separate file that is imported. A mini-
mal example for resolving dependencies from a repository manager running on 1ocalhost is shown in
Minimal Setup for Aether Ant Tasks.

Minimal Setup for Aether Ant Tasks

<project xmlns:aether="antlib:org.eclipse.aether.ant">
<taskdef uri="antlib:org.eclipse.aether.ant"
resource="org/eclipse/aether/ant/antlib.xml">
<classpath>
<fileset dir="S${aether.basedir}"
includes="aether—ant-tasks—x.jar" />
</classpath>
</taskdef>
<aether:mirror id="mirror"
url="http://localhost:8081/nexus/content/groups/public/"
mirrorOf="«"/>

</project>

These minimal settings allow the aether: resolve task to download the declared dependencies.

https://github.com/sonatype/nexus-book-examples
http://www.eclipse.org/aether/

Repository Management with Nexus 60/ 440

To deploy build outputs to a repository with the aether: deploy task, user authentication and details
about the target repositories have to be added .

Full example projects can be found in the ant—aether folder of the documentation examples project.
A full build of the simple-project, including downloading the declared dependencies and uploading
the build output to Nexus can be invoked with

cd ant-aether/simple-project
ant deploy

Further details about using these example projects can be found in Chapter 25.

4.8 Gradle

Gradle has a built in dependency management component that supports the Maven repository format.
In order to configure a Gradle project to resolve dependencies declared in build.gradle file, a
maven repository as shown in Minimal Gradle Setup has to be declared

Minimal Gradle Setup

repositories {
maven {
url "http://localhost:8081/nexus/content/groups/public"

These minimal settings allow Gradle to download the declared dependencies.

The above setup is specific to each project. Alternatively an init.gradle file placed e.g.,in ~/ .gra
dle can establish the repository as the source for dependencies in all projects. A simple implementation
could look like

allprojects {
ext .RepoConfigurator = {
maven {
url = uri(’'http://localhost:8081/nexus/content/groups/public’) }
}
buildscript.repositories RepoConfigurator
repositories RepoConfigurator

https://github.com/sonatype/nexus-book-examples
http://www.gradle.org/

Repository Management with Nexus 61/440

Other setup could be an expansion of the following example allowing file system based repostories:

/ x %
* init.gradle file for development using the Nexus Repository Manager as <+
proxy repository
*
* @author Manfred Moser <manfred@simpligility.com

*/
apply plugin:NexusRepositoryPlugin

class NexusRepositoryPlugin implements Plugin<Gradle> ({

final static String LOG_PREFIX = "init.gradle/NexusRepositoryPlugin:"
final Closure NexusConfig = {
maven {
name = ’standard-nexus’

url = ’'http://localhost:8081/nexus/content/groups/public’
}
// if required you can add further repositories or groups here
// and they will be left intact if the name starts with standard-
// although it is better to just add those repositories in Nexus
// and expose them via the public group

final Closure RepoHandler = {
all { ArtifactRepository repo —>
if (repo.name.toString () .startsWith ("standard-")) {
println "$LOG_PREFIX $repo.name at S$repo.url activated as <+
repository."
} else {

if (repo instanceof MavenArtifactRepository) ({
remove repo
println "$LOG_PREFIX S$repo.name at S$repo.url removed."
} else {
println "$LOG_PREFIX S$repo.name kept (not a Maven repository)."

void apply (Gradle gradle) {
// Override all project specified Maven repos with standard
// defined in here
gradle.allprojects{ project —->
println "S$LOG_PREFIX Reconfiguring repositories."
project.repositories RepoHandler

Repository Management with Nexus 62 /440

project.buildscript.repositories RepoHandler

project.repositories NexusConfig
project.buildscript.repositories NexusConfig

Gradle init scripts can be much more powerful and customized and are explained with more examples in
the official Gradle documentation.

To deploy build outputs to a repository with the uploadArchives task, user authentication can be
declared in e.g., gradle.properties:

nexusUrl=http://localhost:8081/nexus
nexusUsername=admin
nexusPassword=adminl23

and then used in the uploadArchives task with a mavenDeployer configuration from the Maven
plugin:

uploadArchives {
repositories {
mavenDeployer {
repository (
url: "${nexusUrl}/content/repositories/releases") {
authentication (userName: nexusUsername, password: nexusPassword)
}
snapshotRepository (
url: "${nexusUrl}/content/repositories/snapshots") {
authentication (userName: nexusUsername, password: nexusPassword)

Full example projects can be found in the gradle folder of the documentation examples project. A full
build of the simple-project, including downloading the declared dependencies and uploading the
build output to repository manager can be invoked with

cd gradle/simple-project
gradle upload

Further details about using these example projects can be found in Chapter 25.

http://gradle.org/docs/current/userguide/init_scripts.html
https://github.com/sonatype/nexus-book-examples

Repository Management with Nexus 63 /440

4.9 SBT

sbt has a built in dependency management component and defaults to the Maven repository format. In
order to configure a sbt project to resolve dependencies declared in build. sbt file, a resolver as
shown in Minimal SBT Configuration has to be declared

Minimal SBT Configuration

resolvers += "Nexus" at "http://localhost:8081/nexus/content/groups/public <

"

These minimal settings allow sbt to download the declared dependencies.

To deploy build outputs to a Nexus repository with the pub1lish task, user credentials can be declared
inthe build. sbt file:

credentials += Credentials ("Sonatype Nexus Repository Manager",
"nexus.scala-tools.org", "admin", "adminl23")

Tip
The credentials string should never change, as third-party clients depend on it

And then used in the publishTo configuration:

publishTo <<= version { v: String =>
val nexus = "http://localhost:8081/nexus/"
if (v.trim.endsWith ("SNAPSHOT"))
Some ("snapshots" at nexus + "content/repositories/snapshots")
else
Some ("releases" at nexus + "content/repositories/releases")

Further documentation can be found in the sbt documentation on publishing.

http://www.scala-sbt.org/
http://www.scala-sbt.org/release/docs/Publishing.html

Repository Management with Nexus 64 / 440

4.10 Leiningen

Leiningen has a built in dependency management component and defaults to the Maven repository format.
As a build tool it is mostly used for projects using the Clojure language. Many libraries useful for these
projects are published to the Clojars repository.

If you want use Nexus with Leiningen, first create two new Maven 2 proxy repositories in Nexus with the
remote URL http://clojars.org/repo/. One of these should have the Repository Policy
set to Release and the other should have policy Snapshot. Then add both to your Maven 2 public

group.

In order to configure a Leinigen project to resolve dependencies declared in the project.cl7 file,
amirrors section overriding the built in central and clojars repositories as shown in Minimal
Leiningen Configuration has to be declared.

Minimal Leiningen Configuration

:mirrors {

"central" {
:name "Nexus"
:url "http://localhost:8081/nexus/content/groups/public"
:repo-manager true

}

#"clojars" {
:name "Nexus"
:url "http://localhost:8081/nexus/content/groups/public"
:repo-manager true}

These minimal settings allow Leiningen to download the declared dependencies.

To deploy build outputs to a Nexus repository with the deploy command, the target repositories have
tobeaddtoproject.cljasdeploy-repositories. This avoids Leiningen checking for depen-
dencies in these repositories, which is not necessary, since they are already part of the Nexus public
repository group used inmirrors.

:deploy-repositories [
["snapshots"
"http://localhost:8081/nexus/content/repositories/snapshots"]
["releases"
"http://localhost:8081/nexus/content/repositories/releases"]

http://leiningen.org/
http://clojure.org/

Repository Management with Nexus 65 /440

User credentials can be declared in ~/ . lein/credentials.clj.gpg or will be prompted for.

Further documentation can be found on the Leiningen website.

http://leiningen.org/

Repository Management with Nexus 66 / 440

Chapter 5

Using the User Interface

5.1 Introduction

Nexus Repository Manager and Nexus Repository Manager OSS provide anonymous access for users
who only need to search repositories, browse repositories, and peruse the system feeds. This anonymous
access level changes the navigation menu and some of the options available when you right-click on a
repository. This read-only access displays the user interface shown in Figure 5.1.

= Nexus Repository Manager

Sonatype™ < Welcome

Artifact Search

w21 Y Nexus Repository Manager

Views/Repositories -

Type in the name of a project, class, or artifact into the text box below, and click Search. Use "Advanced
Repositories Search” on the left for more options.

Help

)

Figure 5.1: User Interface for Anonymous Users

The user interface is used with a web browser and works best with modern browsers. Older versions such

Repository Management with Nexus 67 /440

as Microsoft Internet Explorer 7 or earlier are not supported and actively blocked from using the user
interface to avoid an unsatisfactory user experience. Internet Explorer 8 works up to Nexus Repository
Manager 2.8 and is not supported for newer releases.

The user interface is separated into a number of different sections.

Header
The top of the page contains the header and on the right-hand side the Log In button, which is
replaced with a drop-down to log out, as well as navigate to the users profile. The header displays
the version of Nexus Repository Manager and potentially the availability of a newer version.

Main Menu
The left-hand side of the application features the main menu, with its numerous submenus. The
panel itself can be horizontally collapsed and expanded with the button in the top right-hand corner
of the panel. Each submenu can be vertically collapsed and expanded with the button beside the
title for each submenu. Depending on the access rights for the current user, different submenus and
menu items are displayed.

Main Panel
The main panel of the application to the right of the main menu can host different tabs for different
selections on the submenus in the navigation. Each tab can be closed individually and selected as
the active tab.

Figure 5.2 shows a typical user interface appearance with multiple tabs in the main panel. The acti-
vated panel Repositories shows a list of repositories with the current selection highlighted. The panels
underneath the list show details for the selected list item.

Repository Management with Nexus

68 / 440

Sonatype™

Artifact Search

Advanced Search
Views/Repositories

Repositories
Repository Targets
Routing

System Feeds

Build Promation

IQ Server Dashboard
Staging Profiles
Staging Repositories
Staging Ruleset
Staging Upload

Enterprise

Welcome

% Refresh (@ Add...~ (@ Delete FF Trash...~

Repository ~

Repositories

Type Health Check

Public

3rd party
Central

Releases

Snapshots

Expire Cache
Rebuild Metadata
Repair Index

Update Index

Public Repositories

Browse Index

Browse Storage Configuration

“Z, Refresh Path Lookup

I=l <3 Public Repositories

& (] antlr

(] aopalliance

#H [Jasm

[l] backpart-util-concurrent

Routing

User Managed Repositories +

IQ Policy Violations ~ Format

mavenz2
mavenz

maven2

mavenz

mavenz2

Smart Proxy

Palicy Reposilory Status
Release In Service
Release In Service
Release In Service
Snapshot In Sanvice -
3
x P

Figure 5.2: Typical Example User Interface with Repository List and Details

The list header features buttons for various operations as well as an input box that allows you to filter the
list by any terms used in any column. Figure 5.3 shows an example use case where a user typed "snap"
in the filter box and the list of repositories only shows snapshot repositories. This filtering works for all
columns in a list and can be used in most list displays. For example you can use it to filter the users list to
find disabled users, filter the routing list, the roles list and many more.

The column headers in most lists can be clicked to invoke a sorting of the list by the respective column.

Welcome

Repository -

Apache Snapshots
Codehaus Snapshots
Snapshots

Sonatype Grid Snapshot

Repositories

“Z Refresh () Add..~ (@ Delete F Trash..»

Type
proxy

proxy

hosted

proxy

Health Check

Format

maven2
maven2
mavenz2

mavenz2

' User Managed Repositories »

snap

Policy

Snapshot
Snapshot
Snapshot

Snapshot

Repository Status

In Service
In Service
In Service

In Service

Figure 5.3: Filtering the Repository List to Display Only Snapshot Repositories

Tip

A right mouse button click on list items exposes a context sensitive menu of operations in some lists.

Repository Management with Nexus 69 /440

5.2 Browsing Repositories

Available in Nexus Repository Manager OSS and Nexus Repository Manager

One of the most straightforward uses of the repository manager is to browse the structure of a repository.
If you click on the Repositories menu item in the Views/Repositories menu, you should see the following
display. The top half of Figure 5.4 shows you a list of groups and repositories along with the type of
the repository and the repository status. To browse the components that are stored in a local repository
manager, click on the Browse Storage tab for a repository as shown in Figure 5.4.

Welcome Repositories L]

2, Refresh () Add..» (@) Delete ﬁTrash...- | User Managed Repositories »

Repository = Type Health Check Format Policy Repository
Public Repositories group . ANALYZE maven2

3rd party hosted (@EYTYET S maven2 Release In Service

Apache Snapshots proxy " ANALYZE] maven2 Snapshot In Service

Central proxy ' 100 ﬁ 107 maven2 Release In Service

Central M1 shadow virtual T ANALYZE maven 1 Release In Service

Codehaus Snapshots proxy . ANALYZE maven2 Snapshot In Service

MyProxyRepo proxy (@0 h;) maven2 Release In Service

Central

Browse Index Browse Remote Browse Storage Configuration Health Check Rou =
“% Refresh Path Lookup: X

[ognl
==y org
& [antr
= =5 apache
[Jant
|| apache
® [bval
=l =5 commons
& [_] commons-io
=) (= commons-langd
=931
:_j‘] commons-lang3-3.1 jar
:_j‘] commons-lang3-3.1 jar.sha
:_j']commons—lang\'i%ipom
:_j‘]commons-langS%ﬁ.pom.sha1

Figure 5.4: Browsing a Repository Storage

Repository Management with Nexus 70/ 440

When you are browsing a repository, you can right-click on any file and download it directly to your
browser. This allows you to retrieve specific components manually or examine a POM file in the browser.
In addition, components as well as directories can be deleted using right-click.

Note

When browsing a remote repository you might notice that the tree doesn’t contain all of the components
in a repository. When you browse a proxy repository, the repository manager is displaying the compo-
nents that have been cached locally from the remote repository. If you don’'t see an component you
expected to see in the repository manager, it only means that it has yet to cache the component locally.
If you have enabled remote repository index downloads, it will return search results that may include
components not yet downloaded from the remote repository. Figure 5.4, is just an example, and you
may or may not have the example component available in your repository manager.

A proxy repository acts as a local cache for a remote repository, in addition to downloading and caching
components locally, the repository manager will also download an index of all the components stored in
a particular repository. When searching or browsing for components, it is often more useful to search and
browse the repository index. To view the repository index, click on the Browse Index tab for a particular
repository to load the interface shown in Figure 5.5.

Repository Management with Nexus 71/440

Welcome Repositories x

%% Refresh () Add..» (@ Delete {5 Trash..» [User Managed Repositories

Repository Type «» | Health Check Format Policy Repository Status
Public Repositories group ANALYZE | maven2

3rd party hosted (@EUTYRT S mavenz Release In Service
Releases hosted {@EUTYRT S mavenz2 Release In Service
Snapshots hosted (@EEUTYRT 38 mavenz Snapshot In Service
Apache Snapshots proxy T ANALYZE] maven2 Snapshot In Service
Central proxy ' 100 Q 107 maven2 Release In Service

Public Repositories
Browse Index Browse Storage Configuration Routing Smart Proxy

2, Refresh

= = Public Repositories
=l = abbot
=1 = abbot
(0123
= 30130
/=] abbot-0.13.0 jar
(] acegisecurity
=l (5 activation
= = activation
=102
=] activation-1.0.2.pom
|| activecluster

Figure 5.5: Browsing a Repository Index

5.3 Viewing the Artifact Information

Available in Nexus Repository Manager OSS and Nexus Repository Manager

Once you located an archive in the repository index or storage or via a search the right-hand panel will
at minimum show the Artifact Information tab as visible in Figure 5.6. Besides showing details like the
Repository Path, Size, Checksums, location of the component and other details, you are able to download
and delete the component with the respective buttons.

Repository Management with Nexus

72 /440

Browse Index Browse Storage

% Refresh Path Lookup: orgfapache/maven/maven-core/

L L ——
H maven-compat
= =5 maven-core
®)20
®[]208
®[]208
H[]208
H]221
=30
®[]3.03
259304
5 maven-core-3.0.4-javadoc jar
=| maven-core-3.0.4-javadoc.jar.shal
=] maven-core-3.0.4-sources. jar
=| maven-core-3.0.4-sources.jar.shal
=] maven-core-3.0.4.jar
=| maven-core-3.0.4.jar.shal
=] maven-core-3.0.4.pom
=| maven-core-3.0.4.pom.shal

Maven || Artifact

Repository Path:
Uploaded by:
Size:

Uploaded Date:
Last Modified:

Download

Checksums

SHAL
MD5

Contained In Repositories

Central, sonatype-grid-releases

Archive Browser Maven Dependency

Jorg/apache/ maven/maven-core/3.0.4/maven-core-3.0.4. jar
anonymous

545.94 KB

Tue Jan 17 2012 00:45:30 GMT-0800 (PST)

Tue Jan 17 2012 00:45:30 GMT-0800 (PST)

Delete

4d602d977827c011322928c4cedf021575fa3%c
72cc06248fdbd9dB9306c282d30da314

Figure 5.6: Viewing the Artifact Information

5.4 Viewing the Maven Information

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

If the component you are examining is a Maven-related component like a pom file or a jar, you will see
the Maven Information tab in the right-hand panels. As visible in Figure 5.7, the GAV parameters are
displayed above an XML snippet identifying the component that you can just cut and paste into a Maven

pom.xml file.

Repository Management with Nexus 73 /440

Maven || Artifact | Archive Browser Maven Dependency

Group: org.apache.maven
Artifact: maven-core
Version: 3.0.4

Extension: jar

XML: <dependency=

<groupld=org.apache.maven</groupld=

<artifactld>maven-core</artifactld>

<version=3.0.4</version>
</dependency>

Figure 5.7: Viewing the Maven Information

5.5 View and Editing Artifact Metadata

Available in Nexus Repository Manager only

Support for custom metadata for components in Maven 2 repositories is part of Nexus Repository Man-
ager. You can view, edit, and search for additional metadata associated to any component in your reposi-
tories.

The features for custom metadata usage need to be activated by adding and enabling the Custom Metadata
capability as described in Section 6.6.

Prior to Nexus Repository Manager 2.7 custom metadata support was an optional plugin that needed to
be installed, following the instructions in Section 22.1. The directory containing the plugin code is called
nexus-custom-metadata-plugin-X.Y.Z. Install the plugin

Security privileges allow you to define "read only" as well as "write" access for custom metadata as well
as grant or disallow access.

When viewing a specific component from browsing repository storage or a repository index or from a
search, the Artifact Metadata tab displays the interface shown in Figure 5.8.

Repository Management with Nexus 74 /440

Artifact Information | Artifact Metadata

Filter: Enter filter term... D ndd... D k

Key . Value Namespace

approved 1 urn:nexus/usent

approvedBy tobrien UFn:nexUus/us et

artifactld activemg-core urn:mavens

baseVersion 53.0 urn:mavens

extension jar UFn:mavens

groupld org.apache.activemnq Urn:mavens#

path lorgiapache/activemg/activemg-cor... urn:mavens#

repositoryld central Urn:mavens#

type urm:maven#artifact f-syntax-ns#

version 53.0 urn:mavens

€ = R
Sawve Reset

Figure 5.8: Viewing Artifact Metadata

Artifact metadata consists of a key, a value, and a namespace. Existing metadata from a component’s
POM is given a urn : maven namespace, and custom attributes are stored under the urn: nexus/user
namespace.

To add a custom attribute, click on a component, and select the Artifact Metadata tab. Click Add. .. there
and a new row will be inserted into the list of attributes. Supply a Key and Value and click Save to update
the component’s metadata. Figure 5.9 shows the Artifact Metadata panel with two custom attributes:
"approvedBy" and "approved".

Repository Management with Nexus

75/ 440

Mawven Central

Browse Storage Browse Index Configuration Mirrors Summary

=] activemg-core-5.3.0-javadoc .jalm
=] activemg-core-5.3.0-schema. ht
5 activemg-core-5.3.0-sources . ja
=] activemg-core-5.3.0-tests jar
=] activemg-core-5.3.0.jar

& [activemg-fileserver

& [activemqg-jaas

& [activemg-jmdns_1.0

& [activemg-jpa-store

T

2, Refresh Artifact Information | Artifact Metadata
H[]41.2 " Filter:| Enter filter term...
(500 Key = Value
B1510 F
(520 approvedBy tobrien
=49 5.3.0 approved 1

) Add... & Delete

Mamespace
urn:nexusiusers

urr:nexusiusers

Figure 5.9: Editing Artifact Metadata

You can upload custom metadata data using an xml file. The file will be processed as component metadata

if it meets the following criteria:

¢ file extensionis .n3 or .xml

* the component classifier is metadata

Here are example contents of a metadata file which adds additional custom metadata to a component with

GAV of "test:project:1.0" and packaging of "jar":

<urn:maven/component#test:project:1.0::jar>
<urn:mycustomspace#repositoryId> "releases" ;
<urn:mycustomspace#mavenVersion> "2.2.1" ;
<urn:mycustomspace#releaseManager> "myusername"
<urn:mycustomspace#codeCoverage> ".99"

A file with the above metadata content and a name of metadata.n3 can e.g., be attached as an addi-

tional project output component with the build helper maven plugin.

Repository Management with Nexus 76 /440

<plugin>
<groupId>org.codehaus.mojo</groupld>
<artifactId>build-helper-maven-plugin</artifactId>
<version>1.7</version>
<executions>
<execution>
<id>attach-components</id>
<phase>package</phase>
<goals>
<goal>attach-component</goal>
</goals>
<configuration>
<artifacts>
<artifact>
<file>metadata.n3</file>
<type>n3</type>
<classifier>metadata</classifier>
</artifact>
</artifacts>
</configuration>
</execution>
</executions>
</plugin>

The metadata in the file is consumed by the custom metadata plugin and becomes available in the user
interface for inspection and search. By default this metadata available for read operations only. If the
repository deployment policy allows redeploys, the custom metadata can be changed.

5.6 Using the Archive Browser

Available in Nexus Repository Manager only

For binary components like jar files the repository manager displays an Archive Browser panel, as visible
in Figure 5.10 that allows you to view the contents of the archive. Clicking on invidiual files in the
browser will download them and potentially display them in your browser. This can be useful for quickly
checking out the contents of an archive without manually downloading and extracting it.

Repository Management with Nexus 77 /440

Maven | Artifact | Archive Browser Maven Dependency

% Refresh

= £ maven-core-3.0.4 jar (Expand to browse archive)
= METAINF
[[_] maven
H [plexus
=] DEPENDENCIES
=] LICENSE
=] MANIFEST.MF
=]NOTICE
2 Jorg
= £ apache
= £ maven
[[artifact
H [classrealm
|_] configuration
H] eventspy

Figure 5.10: Using the Archive Browser

Important
The archive browser is a feature of Nexus Repository Manager.

5.7 Inspecting the Component Dependencies

Available in Nexus Repository Manager only

Nexus Repository Manager provides you with the ability to browse an component’s dependencies. Using
the component metadata found in an component’s POM, the repository manager will scan a repository or a
repository group and attempt to resolve and display a component’s dependencies. To view an component’s
dependencies, browse the repository storage or the repository index, select a component (or a component’s
POM), and then click on the Maven Dependency tab.

On the Maven Dependency tab, you will see the following form elements:

Repository Management with Nexus 78 /440

Repository
When resolving a component’s dependencies, the repository manager will query an existing repos-
itory or repository group. In many cases it will make sense to select the same repository group
you are referencing in your Maven settings. If you encounter any problems during the dependency
resolution, you need to make sure that you are referencing a repository or a group that contains
these dependencies.

Mode
An component’s dependencies can be listed as either a tree or a list. When dependencies are dis-
played in a tree, you can inspect direct dependencies and transitive dependencies. This can come
in handy if you are assessing a component, based on the dependencies it is going to pull into your
project’s build. When you list dependencies as a list, the repository manager is going to perform
the same process used by Maven to collapse a tree of dependencies into a list of dependencies using
rules to merge and override dependency versions if there are any overlaps or conflicts.

Once you have selected a repository to resolve against and a mode to display a component’s dependencies,
click on Resolve as shown in Figure 5.11. Clicking on this button will start the process of resolving
dependencies, depending on the number of components already cached, this process can take anywhere
from a few seconds to a minute. Once the resolution process is finished, you should see the component’s
dependencies, as shown in Figure 5.11.

Maven | Artifact | Archive Browser Maven Dependency

Repository:| Public Repositories w Mode: Tree v | | Resclve

Fitter: Enter filter term... x| o

= | | org.apache maven:maven-core:3.0.4

|| org.apache maven maven-model:3.0.4
|| org.apache maven maven-settings:3.0.4
|| org.apache maven maven-settings-builder: 3.0.4
|| org.apache. maven maven-repository-metadata:3.0.4
|| org.apache maven maven-artifact:3.0.4
| | org.apache maven maven-plugin-api:3.0.4
|| org.apache maven maven-model-builder:3.0.4

= | | org.apache maven maven-agther-provider:3.0.4

|| org.sonatype.aether:agther-spi:1.13.1

Figure 5.11: View a Component’s Dependencies

Once you have resolved a component’s dependencies, you can use the Filter text input to search for
particular component dependencies. If you double-click on a row in the tree or list of dependencies, you
can navigate to other components within the user interface.

Repository Management with Nexus 79/ 440

5.8 Viewing Component Security and License Information

Available in Nexus Repository Manager only

One of the added features of Nexus Repository Manager is the usage of the curated and up to date in-
formation from the Nexus IQ Data Services. This data contains security and license information about
components and is accessible for a whole repository in the Repository Health Check feature described in
Chapter 12. Details about the vulnerability and security issue ratings and others can be found there as
well.

The Component Info tab displays the security and licence information available for a specific component.
It is available in browsing or search results, once a you have selected a component in the search results
list or repository tree view. An example search for Jetty, with the Component Info tab visible, is displayed
in Figure 5.12. It displays the results from the License Analysis and any found Security Issues.

The License Analysis reveals a medium threat triggered by the fact that Non-Standard license headers
were found in the source code as visible in the Observed License(s) in Source column. The license found
in the pom.xml file associated to the project only documented Apache-2.0 or EPL-1.0 as the Declared
License(s).

The Declared License details the license information found in POM file or other meta data. The Observed
Licenses in Source lists all the licenses found in the actual source code of the library in the form of file
headers and license files. This data is based on source code scanning performed and provided by the
Nexus IQ Data Services.

Repository Management with Nexus 80/440

Welcome Search %
GAV Search~ Group: org.maonbay. jetty Artifact; jetty Version: Packaging:
Group Artifact Viersion Age - Popularity Security Issues License Threat Download
org.mortbay jetty ety 6.1.26 34 yrs . o pom, iﬂf.:s‘ls.]ar.
| E—————] . . Standard sources.jar,
javadoc. jar
org.mortbay jetty jotty 6.1.26RCO 35yrs pom, jar, tests jar,
n l Mon-Standard sources.jar,
javadoc jar
org.mortbay jetty etty 6.1.25 3T yre e [r— "I ?(3““'“ :e"stg.jar.
Displaying Top 111 records % Clear Resulis
“ZRefresh | Viewing Repository: Central »
@612 || Artifact | Artifact Metadata | Archive Browser | Maven Dependency || Component Info |-
@B]61.22
B0612 ® License Analysis
H(16.1.24 Threat Level Declared License(s) Observed License(s) in Source
@(J8125 l MNon-Standard Apache-2.0 or EPL-1.0 Apache-2.0, EPL-1.0, Non-Standard
=HE96.1.26
= jetty-6.1.26-javadoc ja
Sliety-6.1.26-s0urces ;. @ Security Issues
=] jetty-6.1.26-tests.jar ! ThreatLevel ~ Problem Code Summary
=] jetty-6.1.26 jar
@ [Z] 8.1.26RCO 5 CVE-2011-4461 Jetty 8.1.0.RC2 and sarlier computes
. hash vales for form parameters
@ (16.1.2pre0 without restricting the abdity to trigger
[8.1.2prel hash colisions predictably, which alows
. remote attackers to cause a dendal of
#8120 service (CPU consumption) by sending
@ 01 6.1.2r¢1 many crafted parameters.
@ C18.1.2re2 osvdb-78117 Jetty Hash Coligsion Form Parameter
W C18.1.2r04 Parging Remote DoS

Figure 5.12: Component Info Displaying Security Vulnerabilities for an Old Version of Jetty

The Security Issues section displays two issues with Threat Level values 5. The Summary column con-
tains a small summary description of the security issue. The Problem Code column contains the codes,
which link to the respective entries in the Common Vulnerabilities and Exposures CVE list displayed in
Figure 5.13.

Repository Management with Nexus

81/440

> =
s 0\~

\m_).h_o“

Aboiit CVE
ay

CVE List

Abaut CVE Tdantifars
Search CWE

Search NWD

Updates & ASS Feeds
Requesta CVE-LD

CVE In Use
CVE-Compatible Products
NVD for CVE Fix
Infoematian

CVE Numbering
Autharibes

News & Events
Calendar

Fraw Mawssalier

mmunity
itarial Board

tact Us

Search the Site
——

CVE LIST compaTiBiLITy NEWS = NOVEMBER 1, SEARCH

Common Wuln

The Stawdand for

TOTAL CVEs E3217

HOME > CVE > CWE-2011-4361 [UNDER REVIEW)

Printer-Friendly View

CVE-2011-4461 Learn more at National
Vulnerability Database {NVD)
= Severity Rating » Fix Inforrnation »
Wulnarable Software Versions » SCaF
Mapzings

{under review)

Jetty 8.1.0.RC2 and earlier computes hash values for form
parameters without restricting the ability to trigger hash
collisions predictably, which allows remate attackers o
cauge a denial of service (CPU consumption) by sending
many crafted parameters.,

Note: Rafarences are provided for the convensence of the reader to
help distinguish between vuinerabilities. The list is not intended to be
camplete.

o MISC:http:ffwww.nruns.com/ downloadsfadvisory28122011 pdf
= MISC:http:ffaww.ocert.org/advisoies/ocert-2011 -D03. html
* USUNTULUSN-1425-1

ities and Exposures

i Fecurity Vainerahility Nanes

About CWE Identifiers
Editorial Polices

Data Sources
#aferance Key/Maps
Search Tips.

Updates & RSS Faeds
Request 8 CVE
Tdentifier

ITEMS OF INTEREST

Terminalogy
VD

Figure 5.13: Common Vulnerabilities and Exposures CVE Entry for a Jetty Security Issue

Understanding the Difference, Nexus Repository Manager and Nexus IQ Server integration In this
section, we’ve talked about the various ways component data is being used, at least at an introductory
level. However, understanding the differences between the Nexus IQ Data Services usage in Nexus
Repository Manager and Nexus 1Q Server may still be a little unclear. Rather you are likely asking,
"What do I get with an integration of Nexus Repository Manager and Nexus IQ Server?

Policy Management
Your organization likely has a process for determining which components can be included in your
applications. This could be as simple as limiting the age of the component, or more complex, like
prohibiting components with a certain type of licenses or security issue.

Whatever the case, the process is supported by rules. Nexus IQ Server Policy management is a way
to create those rules, and then track and evaluate your application. Any time a rule is broken, that’s
considered a policy violation. Violations can then warn, or even prevent a release.

Here’s an example of the Nexus IQ Server features for Staging.

Repository Management with Nexus 82/440

Welcome Staging Repositorie *
3, Refresh LjClose | = & Drop Filter by profile "
|:| Repository Profile Status Updated Descriptioi
El _» catchal-008 Catchall open 2013-Apr-10 23:27:04 Implicithy ..
[E nxs301-008 MNXS301 closed 2013-Apr-10 2311213 test

- catchall-009

Summary | Activity || Content

=T Activities Event: Failed: clm e
HF open ‘Wednesday, April 10, 2013 23:27:04 POT @‘?
5 close (GMT-0700)

i"l‘e;: Evaluating rules: clm

if—“} Evaluating rule: clm Validation falled.

'&D,E Failed: clm

%1 rule failed: cim Found 28 vielations in 28 components

i"l‘e;: Evaluating rules: Default Always Run &

if—“} Evaluating rule: Repository Writable 14 n .

L

CRITICAL

'&} Passed: Repository Writable
%AII rules passed: Default Ahvays Run
@ ciose failed

Figure 5.14: Staging Repository Activity with a Nexus IQ Server Evaluation Failure and Details

Component Information Panel
The Component Information Panel, or CIP, provides everything you need to know about a compo-
nent. Looking at the image below, you’ll notice two sections. On the left, details about the specific
component are provided. On the right, the graph provides a wide variety of information including
popularity, license, or security issues. You can even click on each individual version in the graph,
which will then display on the left.

Repository Management with Nexus 83/440

Maven | Artifact | Artifact Matadata | Archive Brovser Maver Depencendy Component Info

Application: My Appication

Fa Groun: org.apache.struts
' Anifac: strutaZ-cors Popuinriy
Warsion: 2.3.8

Crvarricden Lioanse: - Lisonse Hgs

Diclrad Liserae: Apacha-2.0 Swmuiyters Rp BB BBEBRBB
FEEEFEFRFEE

Observed Licorse: Apache-2.0
Highest Palicy Theese: [0 within § polisies
Highes! Security Theear: [within 17 security issues
Cardoged: 1 yeas age
st S1ate:; et

Igsrification Sourcs: Sonatype

View Details

Figure 5.15: Component Information Panel Example

Note
The CIP is then expanded with the View Details button which shows exactly what security or
license issues were encountered, as well as any policy violations.

Audit and Quarantine
The Audit and Quarantine features use Nexus IQ policy management to protect your development
environment from serving risky, unwanted components. You can enable these features to identify,
prevent, and release such components that may compromise a proxy repository.

5.9 Browsing Groups

Available in Nexus Repository Manager OSS and Nexus Repository Manager

The repository manager contains ordered groups of repositories that allow you to expose a series of
repositories through a single URL. More often than not, an organization is going to point Maven at the
default repository group Public Repositories. Most endusers of the repository manager are not going to
know what components are being served from what specific repository, and they are going to want to be
able to browse the public repository group.

To support this use case, the repository manager allows you to browse the contents of a repository group
as if it were a single merged repository with a tree structure. Figure 5.16, shows the browsing storage
interface for a repository group. There is no difference to the user experience of browsing a repository
group vs. browsing a repository.

Repository Management with Nexus

84 /440

Welcome Repositories %

2, Refresh () Add...~ (&) Delete ﬁTrash...v | "|User Managed Repositories =

Repository - Type Health Check Format Policy Repository Status
Apache Snapshots proxy] maven? Snapshot In Service
Central proxy W72 #©35 mavenz Release In Service
Central M1 shadow wirtual |] mavani Release In Sarvice

P R R S P i RE——Y P —

Central

Browse Index Browse Remate Browse Storage Configuration Health Check

“Z Refresh Path Lookup: orglapache/commonsicommons-lang3/3.1|

) ognl
= org
=l apache
= apacha
) camel
= 5 commons
= 5 commons-lang3
=934
=] commaons-lang3-2.1 jar
=] commaons-lang3-2.1 jar.sha1
=] commaons-lang3-2.1.pom
=] commaons-lang3-3.1.pom.shal

Routin =

x P

Figure 5.16: Browsing a Repository Group

When browsing a repository group’s storage, you are browsing the underlying storage for all of the repos-
itories in a group. If a repository group contains proxy repositories, the Browse Storage tab will show all
of the components in the group that have been downloaded from the remote repositories. To browse and
search all components available in a group, click on the Browse Index tab to load the interface shown in
Figure 5.17.

Repository Management with Nexus 85/440

Welcome Repositories x

“% Refresh () Add..» (S Delete {T§ Trash..» [UserMan

Repository Type Health Check

Public Repositories group ANALYZE |
3rd party hosted " ANALYZE]
Apache Snapshots proxy " ANALYZE |

Public Repositories

Browse Index Browse Storage Configuration -

“%; Refresh
(] commons-jxpath
= = commons-lang
=) =5 commons-lang

(10
®] 1.0-b1
H ([]10-b11
A []1.04 |
(20 ,
H[g21

Figure 5.17: Browsing a Repository Group Index

5.10 Searching for Components

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

5.10.1 Search Overview

In the left-hand navigation area, there is an Artifact Search text field next to a magnifying glass. To search
for a component by groupld or artifactld, type in some text and click the magnifying glass. Typing in the
search term junit and clicking the magnifying glass should yield a search result similar to Figure 5.18.

Repository Management with Nexus 86 /440

Welcome Search X
Keyword Search~= | junit x P % Teo many resulis, please refine the search condition.
Group Artifact Wersion Most Popular Version Download
junit jurit-dep Show Al Versions 4,10 pom
junit Jumit Show Al Versions 410 pom, sources.jar, javadoc. jar,
jar
com.googlecode.guice-junitd guice-junitd-spring-transacti... Show Al Versions 0.2 pom, jar, tests. jar, test-

sources jar, test-javadoc.jar,

Displaying Top 20 records X Clear Results

%, Refresh | Viewing Repository: Ce =
= =3 Central Maven | Artifact | Artifact Metadata | Archive Browser || Maven Dependency
= 3 junit o
= 53 junit Group: Junit
@37 Artifact: junit
338 Version: 4.11
B384 _
BC]382 Extension: Jr
@40 XML: <dependency>
H 41 <groupld=junit</groupld>
BEI440 <artifactld>junit</artifactld>
- <version>4.11<fversion>
2341 </dependency>

=] junit-4.11-javadae. jar
=] junit-#.11-sources.ja
=] junit-4.11.jar

Figure 5.18: Results of an Artifact Search for "junit"

The groupld in the Group column and the artifactld in the Artifact column identify each row in the search
results table. Each row represents an aggregration of all components in this Group and Artifact coordinate.

The Version column displays a link to Show All Versions, which triggers a search for the specific group
and artifact.

The Most Popular Version column displays the version that has the most downloads by all users accessing
the Central Repository. This data can help with the selection of an appropriate version to use for a
particular component.

The Download column displays direct links to all the components available for the latest version. A
typical list of downloadable components would include the Java archive jar, the Maven pom.xml file
pom, a Javadoc archive javadoc.jar and a Sourcecode archive sources.jar, but other download options are
also added if more components are available. Click on the link to download an component.

Each of the columns in the search results table can be used to sort the table in Ascending or Descending
order. In addition, you can choose to add and remove colums with the sort and column drop-down options
visible in Figure 5.19.

Repository Management with Nexus 87 /440

Version * | Mest Popular Version Downlzad
SO I VTS IO N pone
Show All Versions Zl Sl pom, jar, SOUrces.jar,
Z | sort Descending javadoc jar
Show All Versions nom_ar tests jar test.
[Columns 3 Group i}
Artifact
Wersion b
ven Artifact Archive Browser Maven Dependel [Age
R Popularity
p: junit O
o Most Popular Version
et junit &
Security lssues
on: 4.11 -
i [[] License Threat
sion: Jar
Download
<dependency>
aronnldeinnito/aronnid

Figure 5.19: Sort and Column Options in the Search Results Table

The repository browser interface below the search results table will displays the component selected in
the list in the repository structure with the same information panels available documented in Section 5.2.
An component could be present in more than one repository. If this is the case, click on the value next to
Viewing Repository to switch between multiple matching repositories.

Warning

Let me guess? You installed Nexus Repository Manager, ran to the search box, typed in the
@ name of a group or a component, pressed search, and saw absolutely nothing. No results. The

repository manager isn’t going to retrieve the remote repository indexes by default. You need to

activate downloading of remote indexes for the three default proxy repositories. Without these

indexes, the repository manager has nothing to search. Find instructions for activating index

downloads in Section 6.2.

5.10.2 Advanced Search

Clicking on the (Show All Versions) link in the Version column visible in Figure 5.18 will initiate an
Advanced Search by the groupld and artifactld of the row and result in a view similar to Figure 5.20.

Repository Management with Nexus 88/440

Welcome Search
GAV Search= Group: junit Artifact: junit Version: Packaging:

Group Artifact Version Age Popularity - Security Issues License Threat ~ Download

junit junit 410 25vyrs CPL-1.0 pom, jar, sources jar, javadoc.jar
junit junit isz 69yrs CPL-1.0 pom, sources.jar, javadoc. jar, jar
jumit junit 381 6.9yrs j— CPL-1.0 pom, SOUrces. jar, jar

junit junit 4.1 1.4yrs = CPL-1.0 pom, jar, sources.jar, javadoc.jar
junit junit 482 35yrs =] CPL-1.0 pom, jar, sources jar, javadoc.jar
Displaying Top 20 records #* Clear Results

Figure 5.20: Advanced Search Results for a GAV Search Activated by the Show All Versions Link

The header for the Advanced Search contains a selector for the type of search and one or more text input
fields to define a search and a button to run a new search with the specified parameters.

The search results table contains one row per Group (groupld), Artifact (artifactld), and Version(version).

In addition, the Age column displays the age of the components being available on the Central Repository.
Since most components are published to the Central Repository when released, this age gives you a good
indication of the actual time since the release of the component.

The Popularity column shows a relative popularity as compared to the other results in the search table.
This can give you a good idea on the adoption rate of a new release. For example if a newer version has a
high age value, but a low popularity compared to an older version, you might want to check the upstream
project and see if there is any issues stopping other users from upgrading that might affect you as well.
Another reason could be that the new version does not provide signifcant improvements to warrant an
upgrade for most users.

The Security Issues column shows the number of known security issues for the specific component. The
License Threat column shows a colored square with blue indicating no license threat and yellow, orange
and red indicating increased license threats. More information about both indicators can be seen in the
Component Info panel below the list of components for the specific component.

The Download column provides download links for all the available components.

The following advanced searches are available:

Repository Management with Nexus 89 /440

Keyword Search

Identical to the Artifact Search in the left-hand navigation, this search will look for the specified
strings in the groupld and artifactld.

Classname Search

Rather than looking at the coordinates of an component in the repository, the Classname Search
will look at the contents of the components and look for Java classes with the specified name. For
example, try a search for a classname of Pair to see how many library authors saw a need to
implement such a class, saving you from potentially implementing yet another version.

GAV Search

The GAV search allows a search using the Maven coordinates of a component. These are Group
(groupld), Artifact (artifactld), Version (version), Packaging (packaging), and Classifier (classifier).
At a minimum you need to specify a group, component, or version in your search. An example
search would be with a component guice and a classifier no_aop or a group of org.glassf
ish.main.admingui and a packaging war. The default packaging is jar, with other values as
used in the Maven packaging like ear, war, maven-plugin, pom, ejb and many others being possible
choices.

Checksum Search

Sometimes it is necessary to determine the version of a jar component in order to migrate to a
qualified version. When attempting this and neither the filename nor the contents of the manfiest file
in the jar contain any useful information about the exact version of the jar, you can use Checksum
Search to identify the component. Create a shal checksum, e.g., with the shalsum command
available on Linux or fciv on Windows, and use the created string in a checksum search. This
will return one result, which will provide you with the GAV coordinates to replace the jar file with
a dependency declaration.

Metadata Search

Search for components with specific metadata properties is documented in Section 5.10.3.

Tip

The checksum search can be a huge timesaver when migrating a legacy build system, where the used
libraries are checked into the version control system as binary components with no version information
available.

5.10.3 Searching Artifact Metadata

Auvailable in Nexus Repository Manager only

Repository Management with Nexus 90/ 440

To search for components with specific metadata, click on the Advanced Search link directly below the
search field in the Artifact Search submenu of the main menu. This opens the Search panel and allows
you to select Metadata Search in the search type drop-down as shown in Figure 5.21.

Welcome Repositories Search *
Keyword Search * e
Keyword Search - Artifact WVersion

Classname Search
GAV Search
Checksum Search

Metadata *Sia.':m:h.j\‘mI

Figure 5.21: Searching Artifact Metadata

Once you select the metadata search you will see two search fields and an operator drop-down. The two
search fields are the key and value of the metadata for which you are searching. The operator drop-down
can be set to Equals, Matches, Key Defined, or Not Equal. Equals and Not Equals compare the value
for a specific key. Matches allows the usage of x to allow any characters. E.g., looking for t r+ would
match t rue but also match tree. The Key Defined operator will ignore any value provided and return
all components with the supplied key.

Repository Management with Nexus 91 /440

Welcome Repositories Search *

Metadata Search ™ Key: | approved Equals * Value: 1 jel
Source Index Group - Artifact Version Packaging Classifier
Maven Central (hosted) abbot abbot 0123 jar

Maven Central (hosted) org.apache.activemg activemg-core 5.3.0 jar

Displaying 2 records % Clear Results

Artifact Information Artifact Metadata

Group: org.apache.act X¥ML: | <dependency>
<groupld>org.apache.activemg</groupld>
Artifact: activemqg-core <artifactld > activemq-core</artifactld>
_ <version>5.3.0</version>
Version: 5.3.0 </dependency>

k

Download: pom, artifact

M

Figure 5.22: Metadata Search Results for Custom Metadata

Once you locate a matching component in the results list, click on the component and then select the
Artifact Metadata to examine an components metadata as shown in Figure 5.23.

Repository Management with Nexus

92 /440

Welcome Search %

Metadata Search ¥ Key: approvedBy

groupld

I3

Matches * Value:| to*

Source Index Group « Artifact ersion
Maven Central ... org.apache.activemsg activemg-core 5.3.0
Displaying 1 records * Clear Results

Artifact Information | Artifact Metadata
Filter: Enter filter term... @ Add...

Key . Value Namespace
approved 1 urn:nexus/usent
approvedBy tobrien UFn:nexUus/us et
artifactld activemg-core ur

baseVersion 53.0 urn:mavens
extension jar urn:mavens

TN

LIFM: Mia ens

Packaging
jar

Figure 5.23: Metadata Search Results for Custom Metadata

5.1

Auvailable in Nexus Repository Manager only

Search Example: Analyzing a Security Vulnerability

The following example details how you can analyze security issues of a component and determine a
solution with the help of information available in the repository manager.

You noticed the component with the Group org.springframework, the Artifact spring-beans and Version
2.5.4. Upon further inspection of your software build and the components used, you can confirm that this

Repository Management with Nexus 93 /440

component is indeed part of your shipping software. You might have discovered the need to investigate
this initially by performing a repository health check as documented in the prior sections of Chapter 12
or an external resource such as a security mailing list.

Tip
Nexus 1Q Server for Cl can help you with the detection of license and security issues during continuous

integration builds. Sonatype App Health Check allows you to analyze already assembled application
archives.

A GAV search for the component as documented in Section 5.10 allows you to inspect the Component
Info tab for the component displayed in Figure 5.24.

Welcome Search #
GAV Search= Group: org.springframewaork Artifact: spring-beans Wersion: Packaging:
Group Artifact Version = Age Popularity Security Issues License Threat Download

L WYY spurces jar
org.epringfra... spring-beans 254 6.0yrs pom, jar,

i I jpachesd SOUTCEs jar
org.springfra... spring-beans 253 6.0yrs i . Apache-2.0 pom, jar._
Displaying Top 68 records * Clear Results
2, Refresh | Viewing Reposttory: i

@(J201 40 || Arifact || Artifact Metadata | Archive Browser || Maven Dependency | Component Info

= Jz202

B0203 ® License Analysis

@204 Threat Level Declared License(s) Observed License(s) in Source

H[1205

w7208 I Apache-2.0 Apache-2.0 Apache-2.0

®J207

B]208 ¥ Security Issues

@25 Threat Level Problem Code Si

B254 reat Level - roblem ummary

@B(J252 5 CVE-2010-1622 SpringScurce Spring Framework 2.5.x

@(C]253 before 2.5.6.5EC02, 2.5.7 before

2,5.7.5R01, and 3.0.x before 3.0.3

29254 allows remote attackers to execute
= : b od HTTP t
=] spring-beans-. zct;m;ziir‘r?;‘g: e via an reques
gspring-beans-. class.classLoader. URLs[0]=jar: followed

21255 by a URL of a crafted jar file.

Figure 5.24: GAV Search Results for org. springframework: spring-beans and Component
Info Tab for Version 2.5.4

For example, after reading the summary and inspecting the entries for the security issues in the security
databases linked in the Problem Code column, you decide that these issues affect your software and a
fix is required. In order to determine your next steps you search for all versions of the spring-beans
component. As a result you receive the list of all versions available partially displayed in Figure 5.25. The

http://links.sonatype.com/products/insight/ci/home
http://links.sonatype.com/products/insight/ac/home

Repository Management with Nexus 94 / 440

Security column in the search results list displays the count of two security issues for the version 2.5.4 of
the library.

Welcome Search %
GAV Search= Group: Org.springframewaork Artfact: spring-beans Version: Packaging:
Group Artifact Version . Age Popularity Security lssues License Threat Download
- SOUTCEs.jar
org.springframe... spring-beans 3.0.5.RELEASE 35yrs . y pom, jar,
[l Apache-2.0 SoUrces.jar
org.springframe... spring-beans 3.0.4.RELEASE 3.Byrs B l Apache-2.0 pom, jar,
) sources.jar
org.springframe... spring-beans 3.0.3.RELEASE 3.8yrs B pom, jar,
= l Apache-2.0 Sources.jar
org.springframe... spring-beans 3.0.2.RELEASE 4.0yrs o = pom, jar,
1 l Apache-2.0 SOUrces. jar
org.springframe... spring-beans 3.0.1.RELEASE 4.1yrs I l Apache-2.0 pom, jar,
) SOUrces.jar
org.springframe... spring-beans 3.0.0.RELEASE 43yrs J l Apache-2.0 pom, jar,
= pag) SoUrces.jar
org.springframe... spring-beans 2.5.6.5EC03 26yrs) y pom, jar,
B l Apache-2.0 SOUFCES.jar
org.springframe... spring-beans 2.5.6.8EC02 38yrs) l Apache-2.0 pom, jar,
- SOUrCEs.jar
org.springframe... spring-beans 256.8EC01 5.0yrs J l Apache-2.0 pom, jar,
L } sources.jar
org.springframe... spring-beans 258 S.4yrs _ pom, jar,
= l Apache-2.0 Sources.jar
org.springlrame... spring-beans 255 S.8yre . pom, jar,
= l Apache-2.0 SOUrCes.jar
org.springframe... spring-beans 254 6.0 yre pom, jar,
I : il #oache20 sources jar

Figure 5.25: Viewing Multiple Versions of org.springframework:spring-beans:x

Looking at the Security Issues column in the results allows you to determine that with the upgrade of the
library to version 2.5.6.SECO02 the count of security issues drops to zero. The same applies to version
2.5.6.SECO03, which appears to be the latest version of the 2.x version of the component. In addition, the
table shows that early versions of the 3.x releases were affected by security issues as well.

With these results, you decide that an immediate update to version 2.5.6.SEC03 will be required as your
next step. In the longer term an update to a newer version of the 3.x or even 4.x releases will follow.

The necessary steps to upgrade depend on your usage of the spring-beans library. A direct usage of
the library will allow you to upgrade it directly. In most cases, this will require an upgrade of other
SpringFramework libraries. If you are indirectly using spring-beans as a transitive dependency, you will
need to figure out how to upgrade either the dependency causing the inclusion or override the version
used.

The detailed measures depend on the build system used, but in all cases you now have the information at
your hands detailing why you should upgrade and what to what version to upgrade to. Nexus IQ Server
offers tools for these migration efforts as well as various ways to monitor your development for security,

Repository Management with Nexus 95 /440

license, and other issues.

5.12 Search Example: Resolving a License Issue

Auvailable in Nexus Repository Manager only

The following example details how you can analyze a license issue of a component found in your repos-
itory health check and determine a solution with the help of information available in the repository man-
ager. The same need for investigation might have been triggered by external means such as a need to do
a legal review of all components as part of your release components and the requirement to manage a
comprehensive bill of materials.

Your repository health check detail report indicated that Hibernate 3.2.7.ga might have issues due to its
Threat Level declared as Non-Standard. Looking at your software components you found that you are in-
deed using this version of Hibernate. Searching for the component in the repository manager provides you
with the search results list and the Component Info tab for the specific version displayed in Figure 5.26.

Repository Management with Nexus 96 /440

Welcome Search *
GAV Search= Group: org.hibernate Artifact: hibernate Version: Packaging:
Group Artifact Version -« Mge Popularity Security Issues License Threat Download
org.hibernate hibernate 3.3.0.CR2 5.7 yrs 1 LGPL-2.1 pom
org.hibernate hibernate 3.3.0CR1 6.0 yrs I LGPL-3.0 pom
org.hibernate hibernate 3.27ga 4.7 yrs pom, jar,
Mon-Stan... sources.jar,
javadoc.jar
org.hibernate hibernate 3.26.ga 6.1yrs pom, jar,
[] Man.Stan snireee iar
Displaying Top 50 records * Clear Results
“Z;Refresh | Viewing Repos —~

F]321ga 40 || Artifact || Artifact Metadata || Archive Browser | Maven Dependency | Component Info

@01322ga @ | jcense Analysis
H(]323ga
m(J3.24ga Threat Level Declared License(s) Observed License(s) in Source
M (J3.2.4.5p1 Non-Standard LGPL-3.0 Apache-1.1, Apache-2.0, LGPL-2.1,
@ (J3.2.5ga LGPL, Non-Standard
H[]326ga
=9&J32T0a @ Security Issues

=] hiberna

=] hiberna Threat Level ~ Problem Code Summary

5 hiberna No known public vulnerabilities for this artifact
#7330 0R1

Figure 5.26: Viewing License Analysis Results for Hibernate

The Component Info tab displays the declared license of Hibernate is the LGPL-3.0 license. Contrary
to that, the licenses observed in the source code include Apache-1.1, Apache-2.0, LGPL-2.1, LGPL and
Non-Standard.

Looking at newer versions of Hibernate you find that the observed license in the source code changed to
Not-Provided. Given this change you can conclude that the license headers in the individual source code
files were removed or otherwise altered and the declared license was modified to LGPL-2.1.

With this information in hand you determine that you will need to contact your lawyers to figure out if you
are okay to upgrade to a newer version of Hibernate to remedy the uncertainty of the license. In addition,
you will need to decide if the LGPL-2.0 is compatible with the distribution mechanism of your software
and approved by your lawyers.

In the above steps you learned how Nexus Repository Manager provides a lot of information allowing
you to effectively manage your components during your software development life cycle with a minimum
amount of effort.

Repository Management with Nexus 97 /440

5.13 Uploading Components

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

When your build makes use of proprietary or custom dependencies that are not available from public
repositories, you will often need to find a way to make them available to developers in a custom Maven
repository. Nexus Repository Manager and Nexus Repository Manager OSS ship with a preconfigured
third-party repository that was designed to hold third-party dependencies that are used in your builds. To
upload components to a repository, select a hosted repository in the Repositories panel and then click on
the Artifact Upload tab. Clicking on the Artifact Upload tab will display the tab shown in Figure 5.27.

3rd party
Browse Index Browse Storage || Configuration Mirrors Routing Smart Prosy Summary || Artifact Upload

Select GAV Definition Source

GAV Definition: Select... -t

Select a source for the GAV definition. GAV can be specified either manually or from a POM file.
These settings will be applied to all artifacts specified below.

Select Artifact(s) for Upload

Select Artifact(s) to Upload...

Filename:
Classifier: (7}
Extension: (%)

Artifacts Remove

Remowve All

Upload Artifact|s) Reset

Figure 5.27: Component Upload Tab

To upload a component, click on Select Artifact(s) to Upload. .., and select one or more components
from the filesystem to upload. Once you have selected a component, you can modify the classifier and the
extension before clicking on the Add Artifact button. Once you have clicked on the Add Artifact button,
you can then configure the source of the Group, Artifact, Version (GAV) parameters.

If the component you are uploading is a jar file that was created by Maven it will already have POM

Repository Management with Nexus 98 /440

information embedded in it. If you are uploading a jar from a vendor you will likely need to set the group
identifier, component identifier, and version manually. To do this, select GAV Parameters from the GAV
Definition drop-down at the top of this form. This will expose a set of form fields which will let you
set the Group, Artifact, Version, and Packaging of the components being uploaded. Packaging can be
selected from the list or provided by typing the value into the input box.

If you would prefer to set the group, component, and version from a POM file associated with the uploaded
component, select From POM in the GAV Definition drop-down. This will expose a button labeled Select
POM to Upload. Once a POM file has been selected for upload, the name of the POM file will be
displayed in the form field below this button.

Tip
Uploading a POM file allows you to add further details like dependencies to the file, which improves the
quality of the upload by enabling transitive dependency management.

The Artifact Upload panel supports multiple components with the same group, component, and version
identifiers. For example, if you need to upload multiple components with different classifiers, you may
do so by clicking on Select Artifact(s) for Upload and Add Artifact multiple times. A common use case
for this upload is to upload the pom and jar file as well as the javadoc and sources jar files file for a
component.

5.14 Browsing System Feeds

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

Nexus Repository Manager provides feeds that expose system events. You can browse these feeds by
clicking on System Feeds under the Views/Repositories menu. Clicking on System Feeds will show the
panel in Figure 5.28. You can use this simple interface to browse the most recent reports of component de-
ployments, cached components, broken components, storage changes and other events that have occurred
in the repository manager.

Repository Management with Nexus 99 /440

System Feeds ¢
“Rafresh [|subscribe

Feed = URL
Authentication and Authorization Events http:/flocalhost:8081/nexus/senice/local/f. a
Broken artifacts in all Nexus repositories (checksum ermror... http://localhost:8081/nexus/senice/local/f...

Broken files in all Nexus repositories (checksum errors, ..}, http/flocalhost:8081/nexus/seni

Errar and Warning events http:/flacalhost:8081/nexus/senice/localif..
Mew artifacts in all Mexus repositories (cached or deployed). http/flocalhost:8081/nexus/semvice/local/f..
MNew cached artifacts in all Nexus repositories (cached) http:/flocalhost:8081/nexus/senice/local/f. -

New artifacts in all Nexus repositories (cached or deployed).

el

Title Date ~
com.simpligility.maven:stagingexample:1.6.1 1/25 1:00 pm
The artifact 'com.simpligility. maven:stagingsxample:1.6.1" in repository ‘Releases’ was deployed.
com.simpligility.maven:stagingexample:1.6 1/25 1252 pm

The artifact 'com.simpligility. maven:stagingsxample:1.6"in repository ‘Releases’ was deployed Action
was initiated by user "admin”. Request originated from IP address 127.0.0.1

com.simpligility.maven:stagingexample:1.6- 1/25 1251 pm
20120125.205105-2

The artifact 'com. simpligility. maven:stagingexample:1.6-20120125 205105-2" in reposi ‘Snapshots’
was de Action was initiated by user "admin”. Request originated from IP address 127.0.0.1
com.simpligility.maven:stagingexample:1.6- 1/25 12:49 pm
20120125.204958-1

The artifact 'com. simpligility. maven:stagingexample:1.6-20120125.204358-1" in repository ‘Snapshots’

was dep \ction was initiated by user "admin”. Request originated from IP address 127.0.0.1.

Figure 5.28: Browsing System Feeds

These feeds can come in handy if you are working at a large organization with multiple development teams
deploying to the same repository manager. In such an arrangement, all developers in an organization can
subscribe to the RSS feeds for New Deployed Artifacts as a way to ensure that everyone is aware when
a new release has been pushed to a repository. Exposing these system events as RSS feeds also opens
the door to other, more creative uses of this information, such as connecting the repository manager to
external, automated testing systems. To access the RSS feeds for a specific feed, select the feed in the
System Feeds view panel and then click on the Subscribe button. This will then load the RSS feed in your
browse and you can subscribe to the feed in your favorite RSS

There are a number of system feeds available in the System Feeds view, and each has a URL that resembles
the following URL:

http://localhost:8081/nexus/service/local/feeds/recentlyChangedFiles

The URLs can be ammended with the parameters f rom and count to specify the dataset viewed. E.g.

http://localhost:8081/nexus/service/local/feeds/recentlyDeployedArtifacts? ¢
count=100

Where recentChanges would be replaced with the identifier of the feed you were attempting to read.
Available system feeds include:

Repository Management with Nexus 100/ 440

* Authentication and Authorization Events

* Broken components in all Nexus repositories

* Broken files in all Nexus repositories

* Error and Warning events

» New components in all Nexus repositories

* New cached components in all Nexus repositories

* New cached files in all Nexus repositories

* New cached release components in all Nexus repositories

* New deployed components in all Nexus repositories

* New deployed files in all Nexus repositories

* New deployed release components in all Nexus repositories
* New files in all Nexus repositories

* New release components in all Nexus repositories

* Recent component storage changes in all Nexus repositories
* Recent file storage changes in all Nexus repositories

» Recent release component storage changes in all Nexus repositories
* Repository Status Changes in Nexus

» System changes in Nexus

5.15 Support Tools

Available in Nexus Repository Manager OSS and Nexus Repository Manager

Support Tools provides a collection of useful information for monitoring and analyzing your Nexus
Repository Manager installation. You can access the Support Tools in the Administration submenu of
the main menu.

Repository Management with Nexus 101 /440

5.15.1 System Information

The System Information tab displays a large number of configuration details related to

Nexus
details about the versions of Nexus Repository Manager and the installed plugins, install and work
directory location, application host and port and a number of other properties.

Java Virtual Machine
all system properties like java.runtime.name, os.name and many more as known by the
JVM running the repository manager.

Operating System
including environment variables like JAVA_HOME or PATH as well as details about the runtime in
terms of processor, memory and threads, network connectors and storage file stores.

You can copy a subsection of the text from the panel, use the Download button to get a text file or use the
Print button to produce a document.

5.15.2 Support Zip

The Support ZIP tab allows you to create a zip archive file that you can submit to Sonatype support via
email or a support ticket. The checkboxes in for Contents and Options allow you to control the content of
the archive.

You can include System Information as available in the System Information tab, a Thread Dump of the
JVM currently running the repository manager, your general Configuration as well as you Security Con-
figuration, the Log and a Metrics file with network and request-related information.

The options allow you to limit the size of the included files as well as the overall file size. Pressing the
Create button with gather all files and create the archive in sonatype-work/nexus/support and
open a dialog to download the file to your workstation.

5.16 Working with Your User Profile

Available in Nexus Repository Manager OSS and Nexus Repository Manager

Repository Management with Nexus 102/ 440

As a logged-in user, you can click on your user name in the top right-hand corner of the user interface
to expose a drop-down with an option to Logout as well as to access your user Profile. Once you have
selected to display your profile, you will get access to the Summary section of the Profile tab as displayed
in Figure 5.29.

Profile
Summary i
User ID L2
First Name Administrator 4
Last Name @
Email changeme@yourcompany.com L2
Password Change Password
Save || Reset |

Figure 5.29: Summary Section of the Profile Tab

The Summary section allows you to edit your First Name, Last Name, and Email directly in the form.

5.16.1 Changing Your Password

In addition to changing your name and email, the user profile allows you to change your password by
clicking on the Change Password text. The dialog displayed in Figure 5.30 will be displayed and allow
you to supply your current password, and choose a new password. When you click on Change Password,
your password will be changed.

Change Password *

Please enter your current password and then the
mesw password twice to confirm,

Current Password:
MNew Password:

Confirm Password: B

Cancel

Figure 5.30: Changing Your Password

Repository Management with Nexus 103/ 440

The password change feature only works with the built-in XML Realm security realm. If you are using a
different security realm like LDAP or Crowd, this option will not be visible.

5.16.2 Additional User Profile Tabs

The Profile tab can be used by other plugins and features to change or access user specific data and
functionality. One such use case is the User Token access documented in Section 6.17.

Repository Management with Nexus 104 / 440

Chapter 6

Configuring Nexus Repository Manager

Many of the configuration screens shown in this section are only available to administrative users. Nexus
Repository Manager allows the admin user to customize the list of repositories, create repository groups,
customize server settings, and create routes or "rules" that Maven will use to include or exclude compo-
nents from a repository.

6.1 Customizing Server Configuration

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

You can access global configuration by clicking on Server under Administration in the left-hand main
menu. The server configuration screens’ subsections are documented in the following sections..

6.1.1 SMTP Settings

Nexus Repository Manager sends email to users who need to recover user names and passwords, notifica-
tions for staging and a number of other uses. In order for these notifications to work, configure the SMTP
server settings in this dialog.

Repository Management with Nexus 105/ 440

You can configure the Hostname and Port of the SMTP server to use as well as Username and Password.
The Connection configuration allows you to configure Nexus Repository Manager to use plain or secure
SMTP to connect to the server or to use STARTTLS for the connection, which would upgrade the initially
established, plain connection to be encrypted. In all cases you will need to ensure that the correct port is
used.

The System Email parameter defines the email address used in the From: header of an email sent by the
repository manager. Typically, this would be configured as a "Do-Not-Reply" email address or a mailbox
or mailing list monitored by the administrators of the server.

Once you have configured the parameters you can use the ZTest SMTP settings button to confirm the
configured parameters and the successful connection to the server. You will be asked to provide an email
address that should receive a test email message. Successful sending will be confirmed in another pop up
message.

- | SMTP Settings

Hostname smtp-host 2
Part 25 v
Username smtp-username L]
Password [T (2]
Connection Use plain SMTP v &
System Email system@nexus.org 2

Use Nexus SSL trust store

Test SMTP settings

Figure 6.1: Administration SMTP Settings

6.1.2 HTTP Request Settings

The HTTP Request Settings allow you to configure the identifier that the repository manager uses when
it is making an HTTP request. You may want to change this if it needs to use an HTTP Proxy, and the
Proxy will only work if the User Agent is set to a specific value.

You can also add extra parameters to place on a GET request to a remote repository. You could use this
to add identifying information to requests.

Repository Management with Nexus

106 / 440

The amount of time the repository manager will wait for a request to succeed when interacting with an
external, remote repository can be configured with the Request Timeout and Request Retry Attempts

settings.

~ |HTTP Request Settings

User Agent Customization)
Additional URL Parameters (2]
Request Timeout 20 seconds &

Request Retry Attempts 3 (7]

Figure 6.2: Administration HTTP Request Settings

6.1.3 Security Settings

The security settings displayed in Figure 6.3 allow you to activate and prioritize security realms by adding
them to the Selected Realms list on the left and placing them higher or lower on the list.

| Security Settings

Selected Realms

=] User Token Realm
=] ¥ml Authenticating Realm
=] ¥ml Autherizing Realm

EEER

™ Anonymous Access

These fields are used to authenticate anonymous requests. When a request comes in without

Available Realms
=| Crowd Realm
Enterprise LOAP Authentication Realm
NuGet AP-Key Realm
Rut Auth Realm

credentials, Nexus uses the Anonymous Username and Anonymous Password field as a
substitute and pass it through the security subsystem. This is used in conjunction with third party
security realm integration. For example if you were authenticating against Active Directory, the
username might be "Guest" instead of anonymous, If you are using the default Nexus security
realm, then these shouldn't be changed.

Anonymous Username 28nanymaus

Anonymous Password

Figure 6.3: Administration Security Settings

Repository Management with Nexus 107 / 440

Effectively, this configuration determines what authentication realm is used to grant a user access and the
order the realms are used.

Xml Authenticating and Xml Authorizing Realm
These identify the internal storage of the repository manager. It is using XML files for storing the
security details.

(Enterprise) LDAP Authentication Realm
This realm identifies external storage in an LDAP system with details documented in Chapter 8.

Crowd Realm
This realm identifies external storage in an Atlassian Crowd system with details documented in
Chapter 9.

Rut Auth Realm
This realm is external authentication in any system with the user authorization passed to the repos-
itory manager in a HTTP header field with details documented in Section 6.18.

The User Token Realm is required for user token support documented in Section 6.17 and the NuGet
API-Key Realm is needed for NuGet support documented in Chapter 16.

In addition, you can enable or disable anonymous access and set the username and password for anony-
mous access. The anonymous username and password are used to integrate with other realms that may
need a special username for anonymous access. In other words, the username and password here are what
we attempt to authorize when someone makes an anonymous request. You would change the anonymous
username to guest if you wanted to integrate the repository manager with Microsoft’s Active Directory.

6.1.4 Application Server Settings

You can change the Base URL for your repository manager installation, which is used when generating
links in emails and RSS feeds. For example, the Nexus Repository Manager instance for Sonatype devel-
opment is at https://repository.sonatype.org, and it makes use of this Base URL field to ensure that links
in emails and RSS feeds point back to the correct public URL. Internally Nexus Repository Manager is
running on a different port and context than the public port 80 and root context.

If you are hosting the repository manager behind a proxy server and you want to make sure that it always
uses the specified Base URL, check the Force Base URL checkbox. If the Force Base URL is not checked,
the repository manager will craft URLs in HTTP responses based on the request URL, but it will use the
Base URL when it is generating emails.

https://repository.sonatype.org

Repository Management with Nexus 108 / 440

+ Application Server Settings (optional)
Base URL http:/flocalhost: 808 1/nexus (%)
Force Base URL W)

Ul Timeout &0 seconds

Figure 6.4: Administration Application Server Settings

Tip

These settings are especially important if the repository manager is proxied by an external proxy server
using a different protocol like HTTPS rather than plain HTTP known to it or a different hostname like
repository.somecompany .com instead of an IP number only.

6.1.5 Default HTTP and HTTPS Proxy Settings

If your repository manager instance needs to reach public repositories like the Central Repository via a
proxy server, you can configure the connection to a proxy server for HTTP and a potentially a different
for HTTPS connection. If you do not configure a proxy for HTTPS, the HTTP proxy server settings will
be used.

You can specify Proxy Host and Proxy Port and, optionally, the authentication details for username,
password, NT LAN Host and NT LAN Manager Domain. In addition, you can configure a number of
hosts that can be reached directly and do not need to go through the proxy in the Non Proxy Host setting.
Figure 6.5 shows the Default HTTP Proxy Settings administration interface. The HTTPS configuration
interface looks the same and is found below the HTTP configuration.

Repository Management with Nexus 109 /440

¥ Default HTTP Proxy Settings (optional)

Proxy Host @
Proxy Port ©
Non Proxy Host @

Add |

Non Proxy Hosts

Remove ‘

Removea All ‘
—| Authentication (optional)

Figure 6.5: Administration Default HTTP Proxy Settings

Tip
This is a critical initial step for many Enterprise deployments of a repository manager, since these
environments are typically secured via a HTTP/HTTPS proxy server for all outgoing internet traffic.

6.1.6 System Notification Settings

When you proxy remote repositories that are not available all the time, the repository manager will auto-
matically block and unblock them during downtimes. The System Notification Settings allows you define
Email Adresses and roles for users that should receive notifications messages for these blocking and un-
blocking events.

Repository Management with Nexus 110/ 440

+ | System Notification Settings
Mexus can be used to notify users (by email address, or users that are part of a specified rols) when one
of the following actions is performed:

Mexus automatically blocks a proxy repository because the remote is unreachable

MNexus automatically unblocks a proxy repository because the remote is again reachable.

Enabled [WE>)
Email Addresses %)

Role Management add

Figure 6.6: Administration System Notification Settings

6.1.7 PGP Key Server Information

Nexus Repository Manager uses a PGP Key Server to retrieve PGP keys when validating component
signatures. To add a new key server, enter the URL in the Key Server URL field and click on the Add
button. To remove a key server, click on the URL you wish to remove from the list and click on the
Remove button. Key servers are consulted in the order that they are listed in the Key Server URLs list. To
reorder your key servers, click and drag a URL in the Key Server URLs list.

~ | PGP Key Server Information

Key Servers usad 1o look up ths PGP Public Kays

Key Server URL: Enter a URL.. L*)
Add |
Key Server URLs

Q http:/ipool. sks-keysevers.nat: 11371
=] hitp:/ipgp.mit.edu: 11371

Remove |

Remove All |

Figure 6.7: Administration PGP Key Server Information

Repository Management with Nexus 111 /440

6.1.8 New Version Availability

Nexus Repository Manager can notify you about the availability of new versions via the user interface.
To enable this feature, check the Enable checkbox in the New Version Availability section of the server
settings as shown in Figure 6.8.

| New Version Availahility

Enable &

Figure 6.8: Administration New Version Availability

6.2 Managing Repositories

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

To manage repositories, log in as the administrative user and click on Repositories in the Views/Reposito-
ries menu in the left-hand main menu.

Nexus Repository Manager provides for three different kinds of repositories: Proxy Repositories, Hosted
repositories, and Virtual repositories.

6.2.1 Proxy Repository

A Proxy Repository is a proxy of a remote repository. By default, Nexus Repository Manager ships with
the following configured proxy repositories:

Apache Snapshots
This repository contains snapshot releases from the Apache Software Foundation.

Codehaus Snapshots
This repository contains snapshot releases from Codehaus.

Central
This is the Central Repository containing release components. Formerly known as Maven Central,
it is the default built-in repository for Apache Maven and directly supported in other build tools

Repository Management with Nexus 112/ 440

like Gradle, SBT or Ant/Ivy. Nexus Repository Manager connects to the Central Repository via
HTTPS using the URL https://repol.maven.org/maven2/.

6.2.2 Hosted Repository

A Hosted Repository is a repository that is hosted by the repository manager. Nexus Repository Manager
ships with the following configured hosted repositories:

3rd Party
This hosted repository should be used for third-party dependencies not available in the public
Maven repositories. Examples of these dependencies could be commercial, proprietary libraries
such as an Oracle JDBC driver that may be referenced by your organization.

Releases
This hosted repository is where your organization will publish internal releases.

Snapshots
This hosted repository is where your organization will publish internal snapshots.

6.2.3 Virtual Repository

A Virtual Repository serves as an adaptor to and from different types of repositories. Currently, Nexus
Repository Manager supports conversion to and from Maven 1 repositories and Maven 2 repositories. In
addition, you can expose any repository format as a NuGet or OBR repository. For example, a Maven 2
repository can contain OSGi Bundles, which can be exposed as a OSGi Bundle repository with the virtual
repository Provider set to OBR.

By default it ships with a Central M1 shadow repository that exposes the Central repository in Maven 1
format.

6.2.4 Configuring Repositories

The Repositories window displayed in Figure 6.9 allows you to create, update and delete different repos-
itories with the Add, Delete and Trash button. Use the Refresh button to update the displayed list of
repositories and repository groups. The Trash button allows you to empy the trash folder into which
deleted components are copied, when any delete operations are performed from the user interface.

Repository Management with Nexus 113 /440

By default, the list of repositories displays the repositories configured and managed by the administrator.
The drop down on the right of the Trash button allows you to switch the list of repositories and view
the repositories managed by the repository manager. There are staging repositories as documented in
Chapter 11 or procurement repositories as documented in Chapter 10.

Welcome Repaositories x

“% Refresh () Add..» (@) Delete {F Trash..~ [User Managed Repositories~

Repository Type «» | Health Check Format Policy Repository Status
Central proxy ' 100 ﬁ’ 107 mawvenz Release In Service
Codehaus Snapshots proxy { ANALYZE maven2 Snapshot In Service
MyProxyRepo proxy @0 LG maven2 Release In Service

NuGet Gallery proxy @0 L hciam nuget Mixed In Service
Central

Browse Index Browse Remote Browse Storage Configuration Health Check Routing S5L Smart H

Repository ID
Repository Name Central
Repository Type
Provider v
Format
Repository Policy Release 2
Default Local Storage Location
Override Local Storage Location
4 | Remote Repository Access

Remote Storage Location https: //secure.central.sonatype.com/mavenz/
Download Remote Indexes True .
Auto Blocking Enabled True 22
File Content Validation True e
save | Reset

Figure 6.9: Repository Configuration Screen for a Proxy Repository

The list of repositories visible in Figure 6.9 allows you to access more details for each repository by
selecting a specific row which displays some information for each repository in the following columns:

Repository
the name of the repository with repository groups displayed in bold

Repository Management with Nexus 114 /440

Type

the type of the repository with values of proxy, hosted or virtual for repositories or group for a
repository group

Health Check
the result counts for a repository health check as documented in Chapter 12

Format
the format used for the storage in the repository with values such as maven?2, nuget, site or
others

Policy
the deployment policy that applies to this repository. A policy applies only to Maven 1 and Maven
2 formatted repositories and allows usage of a Snapshot or a Release policy.

Repository Status
the status of the repository as well as further information about the status. For example, information
about SSL certification problems or the status of the remote repository even for a currently disabled
proxy repository

Repository Path
the direct URL path that exposes the repository via HTTP access and potentially allows access and
directory browsing outside of the user interface

Clicking on a colum header allows you to sort the list in ascending or descending order based on the
column data.

If you right-click on a row, you can trigger a number of actions on the current repository, depending on
the repository type. Actions include:

Expire Cache
expire the cache of hosted or a proxy repository or a repository group

Rebuild Metadata
rebuid the metadata of a hosted Maven 2 repository

Block Proxy / Allow Proxy
toggle between allowing or blocking the remote repository configured in a proxy repository

Put Out Of Service / Put in Service
enable or disable the repository service to allow changing the availability of all components in it

Repair Index / Update Index
repair or update the index of a hosted or proxy repository or a repository group

Repository Management with Nexus 115/ 440

| Access Settings

Allow File Browsing True 2
Include in Search True 7
Publish URL True >

| Expiration Settings

Mot Found Cache TTL 60 minutes &)
Artifact Max Age -1 minutes &)
Metadata Max Age 60 minutes &)
Item Max Age 60 minutes &)

] HTTP Request Settings {optional)

Save] Reset

Figure 6.10: Repository Configuration Screen for a Proxy Repository

3rd party
Browse Index Browse Storage Configuration Mirrors Smart Praoxy k>

| Access Settings

Deployment Policy Allow Redeploy | v
Allow File Browsing True 2
Include in Search True N
Publish URL True 2

4 | Expiration Settings

Not Found Cache TTL 1440 minutes &)

Save J Resat

Figure 6.11: Repository Configuration Access Settings for a Hosted Repository

Figure 6.9 and Figure 6.10 show the repository configuration screen for a proxy repository in the reposi-
tory manager. From this screen, you can manage the settings for proxying an external repository:

Repository ID
The repository ID is the identifier that will be used in the URL. For example, the proxy repository
for the Central Repository has an ID of cent ral, this means that Maven and other tools can access
the repository directly at http://localhost:8081/nexus/content/repositories/

Repository Management with Nexus 116 /440

central. The Repository ID must be unique in a given repository manager installation and is
required.

Repository Name
The display name for a repository is required.

Repository Type
The type of repository (proxy, hosted, or virtual). You can’t change the type of a repository as it is
selected when you create a repository.

Provider and Format
Provider and Format define in what format the repository manager exposes the repository to ex-
ternal tools. Supported formats depend on the installed plugins. Nexus Repository Manager OSS
includes support for Maven 1, Maven 2 and Site repositories. Nexus Repository Manager adds
support for NuGet and OBR and additional plugins can add support for P2 and P2 Update Site and
other formats.

Repository Policy
If a proxy repository has a policy of release, then it will only access released versions from the
remote repository. If a proxy repository has a policy of snapshot, it will download snapshots from
the remote repository.

Default Storage Location
Not editable, shown for reference. This is the default storage location for the local cached contents
of the repository.

Override Storage Location
You can choose to override the storage location for a specific repository. You would do this if
you were concerned about storage and wanted to put the contents of a specific repository (such as
central) in a different location.

Remote Repository Access
This section configures proxy repositories and how the repository manager interacts with the remote
repository, that is being proxied.

Remote Storage Location
The Remote Storage Location needs to be configured with the URL of the remote reposi-
tory, that needs to be proxied. When selecting the URL to proxy it is beneficial to avoid
proxying remote repository groups. Proxying repository groups prevents some performance
optimization in terms of accessing and retrieving the content of the remote repository. If
you require components from the group that are found in different hosted repositories on the
remote repository server it is better to create multiple proxy repositories that proxy the differ-
ent hosted repositories from the remote server on your repository manager instead of simply
proxying the group.

Download Remote Indexes
Download the index of a remote repository can be configured with this setting. If enabled, the
repository manager will download the index, if it exists, and use that for its searches as well as
serve that up to any clients that ask for the index (like m2eclipse). The default for new proxy

Repository Management with Nexus 117/ 440

repositories is enabled, but all of the default repositories included have this option disabled.
To change this setting for one of the proxy repositories that ship with the repository manager,
change the option, save the repository, and then re-index the repository. Once this is done,
component search will return every component available on the Maven Central repository.

Auto Blocking Enabled
If Auto blocking active is set to true, the repository manager will automatically block a proxy
repository if the remote repository becomes unavailable. While a proxy repository is blocked,
components will still be served to clients from a local cache, but the repository manager
will not attempt to locate a component in a remote repository. The repository manager will
periodically retest the remote repository and unblock the repository once it becomes available.

File Content Validation
If set to true, the repository manager will perform a lightweight check on the content of
downloaded files. This will prevent invalid content to be stored and proxied by the repository
manager that otherwise can happen in cases where the remote repository (or some proxy
between the repository manager and the remote repository) returns a HTML page instead of
the requested file.

Checksum Policy
Sets the checksum policy for a remote repository. This option is set to Warn by default. The
possible values of this setting are:

* Ignore - Ignore the checksums entirely

* Warn - Print a warning in the log if a checksum is not correct

* StrictlfExists - Refuse to cache a component if the calculated checksum is inconsistent with
a checksum in the repository. Only perform this check if the checksum file is present.

* Strict - Refuse to cache a component if the calculated checksum is inconsistent or if there
is no checksum for a component.

Authentication
This section allows you to set a Username, Password, NT LAN Host, and NT Lan Manager
Domain for a remote repository.

Access Settings
This section allows for the detailed configuration of access to a repository.

Deployment Policy
This setting controls how a Hosted repository allows or disallows component deployment.
If this policy is set to Read Only, no deployment is allowed. If this policy is set to Disable
Redeploy, a client can only deploy a particular component once and any attempt to redeploy
an component will result in an error. If this policy is set to Allow Redeploy, clients can deploy
components to this repository and overwrite the same component in subsequent deployments.
This option is visible for hosted repositories as shown in Figure 6.11.

Allow File Browsing
When set to true, users can browse the contents of the repository with a web browser.

Include in Search
When set to true, this repository is included when you perform a search in the repository
manager. If this setting is false, the contents of the repository are excluded from a search.

Repository Management with Nexus 118 /440

Publish URL
If this property is set to false, the repository will not be published on a URL, and you will not
be able to access this repository remotely. You would set this configuration property to false
if you want to prevent clients for connecting to this repository directly.

Expiration Settings
The repository manager maintains a local cache of components and metadata, you can configure
expiration parameters for a proxy repository. The expiration settings are:

Not Found Cache TTL
If the repository manager fails to locate a component, it will cache this result for a given
number of minutes. In other words, if the repository manager can’t find a component in a
remote repository, it will not perform repeated attempts to resolve this component until the
Not Found Cache TTL time has been exceeded. The default for this setting is 1440 minutes
(or 24 hours).

Artifact Max Age
Tells the repository manager what that maximum age of a component is, before it retrieves a
new version from the remote repository. The default for this setting is -1 for a repository with
a release policy and 1440 for a repository with snapshot policy.

Metadata Max Age
The repository manager retrieves metadata from the remote repository. It will only retrieve
updates to metadata after the Metadata Max Age has been exceeded. The default value for
this setting is 1440 minutes (or 24 hours).

Item Max Age
Some items in a repository may be neither a component identified by the Maven GAV coor-
dinates or metadata for such components. This cache value determines the maximum age for
these items before updates are retrieved.

HTTP Request Settings
In the HTTP Request Settings you can change the properties of the HTTP request to the remote
repository. You can also configure the User Agent of the request, add parameters to a request, and
set the timeout and retry behavior. The HTTP request configured is the request made from the
repository manager to the remote repository being proxied.

Beyond these configurations in the user interface, Nexus Repository Manager OSS supports the usage
of cookies for remote repositories authentication. Together with the feature to enable circular redirects,
this enables proxying repositories like the Oracle Maven repository. The following configuration can
be added to nexus.properties and allows a functioning proxy repository to the URL https://
maven.oracle.com.

Comma separated list of hostnames that needs to accept circular <
redirections
nexus.remoteStorage.enableCircularRedirectsForHosts=maven.oracle.com
Comma separated list of hostnames that benefit from using cookies
nexus.remoteStorage.useCookiesForHosts=maven.oracle.com

Repository Management with Nexus 119/ 440

6.2.5 Viewing the Summary Panel for a Repository

The Summary panel can be loaded by selecting a hosted, proxy, or virtual repository and then clicking
on the Summary tab. The Summary tab of a hosted repository, as shown in Figure 6.12, displays the
distributionManagement settings that can be used to configure Maven to publish components to
the hosted repository.

Welcome Repositories x

“% Refresh (J) Add..~ (Z) Delete {5 Trash..» [User Managed Repositories»

Repository Type Health Check Format Policy
NuGet Releases UL ANALYZE nuget Mixed
Releases hosted ANALYZE mavenz Release
Snapshots UL ANALYZE mavenz2 Snapshc
Releases

4= rage Configuration Mirrars Routing Smart Proxy Summary ALif| =

Repository ID: releases
Repository Name: Releases
Repository Type: hosted
Repository Policy: Release
Repository Format: maven2
Contained in groups:

Public Repositories

<distributionManagement=
<repository=
<id=releases</fid>
<url=http://localhost: B0B1/nexus/content/repositories/releases < /url=
</repository=
</distributionManagement=>

Figure 6.12: Repository Summary Panel for a Hosted Repository

The Summary panel for a proxy repository, as shown in Figure 6.13, contains all of the repository identi-
fiers and configuration as well as a list of groups in which the repository is contained.

Repository Management with Nexus 120/ 440

Welcome Repositories *

“% Refresh () Add..» (@ Delete 5§ Trash..» [User Managed Repositories»

Repository « Type Health Check Format Policy
Central proxy W00 ﬁ 107 mavenz2 Release
Central M1 shadow vitual @@ECTTIRY o maven Release
Codehaus Snapshots proxy (@ TTTRT] mavenz Snapshc
Central

4 Configuration Health Check Routing S5L Smart Proxy Summary

Repository 1D: central
Repository Mame: Central
Repository Type: proxy
Repository Policy: Release
Repository Format: maven2
Contained in groups:
Public Repositories
Remote URL: https://secure.central.sonatype.com/maven2/

Figure 6.13: Repository Summary Panel for a Proxy Repository

The Summary panel for a virtual repository, as shown in Figure 6.14, displays repository identifiers and
configuration as well as the groups in which the repository is contained.

Repository Management with Nexus

121 /440

Welcome Repositories *

Central M1 shadow
Browse Storage Configuration Smart Proxy

Repository 1D: central-m1

Repository Mame: Central M1 shadow
Repository Type: virtual

Repository Policy: Release

Repository Format: mavenl
Contained in groups:

Repository - Type Health Check
Central proxy W00
Central M1 shadow virtual 7 ANAL
Codehaus Snapshots proxy & L

“% Refresh () Add..» (S Delete {F§ Trash..~ [User Managed Repositories~

Policy

Release

Release

Snapshc

Figure 6.14: Repository Summary Panel for a Virtual Repository

6.2.6 Auto Block/Unblock of Remote Repositories

What happens when the repository manager is unable to reach a remote repository? If you’ve defined a
proxy repository and the remote repository is unavailable, the repository manager will now automatically
block the remote repository. Once a repository has been auto-blocked, the repository manager will then
periodically retest the remote repository and unblock the repository once it becomes available. You can
control this behavior by changing the Auto Blocking Enabled setting under the Remote Repository Access
section of the proxy repository configuration as shown in the following figure to True:

Repository Management with Nexus 122 /440

= |Remote Repository Access

Remote Storage Location hitp/irepo’l.maven.org/maven2/ @
Download Remote Indexes True v | &)
Auto Blocking Enabled True ¥ |
File Content Validation Trug v | @

2 | Flag to enable Auto Blocking for this proxy repository. If
= enabled, Nexus will auto-block outbound connections on

this repository if remote peer is detected as
) Authentication (optional) unrzachable/unresponsive. Auto-blo epositories will
still try to detect remote peer availability, and will auto-
unblock the proxy if remote peer detected as
reachable/healthy. Auto-blocked repositories behaves
| Access Settings exactly the same as user blocked proxy repositoniss,
except they will auto-unblock themselves too.

Checksum Palicy Warn

il

Figure 6.15: Configuring Remote Repository Auto Block/Unblock

6.3 Managing Repository Groups

Available in Nexus Repository Manager OSS and Nexus Repository Manager

Repository groups are a powerful feature of Nexus Repository Manager. They allow you to combine mul-
tiple repositories and other repository groups of the same repository format in a single repository group.
This single group and the associated URL can then be used as a single access point to all components in
a specific format sourced from an number of repositories.

This eases the configuration for the users and at the same time allows the adminstrators to add more
repositories and therefore components without requiring changes on the client computers.

Use the left-hand panel Repositories menu item in the Views/Repositories menu to access the repositories
and groups management interface.

To create a new repository group, press the Add button above the repository list and select Repository
Group. In the configuration tab provide a Group ID and Group Name. The Group ID will be part of the
URL to the repository group and should therefore use a limited set of characters and not contain spaces.
Ideally use only lowercase letters and numbers and characters like -.

The selection of the Provider determines the repository Format and therefore the list of Available Reposi-
tories automatically. To add repositories to the repository group, drag them to the Ordered Group Repos-
itories or use the arrows between the two lists.

Repository Management with Nexus 123 /440

Welcome Repositories L
“Z;Refresh| () Add...» (D) Delete [Trash...» [["|User Managed Repositories v
Repository « Type Health Check Format Policy Repository Status

Public Reposite... group r) maven2

3rd party hosted (. o maven2 Release In Service
Apache Snapshots proxy r o maven2 Snapshot In Service
Public Repositories

Browse Index Browse Storage | Configuration Routing Smart Proxy

Group ID
Group Name Public Repaositories
Provider b
Format
Publish URL True 7
Ordered Group Repositories Available Repositories
ﬂ Releases 5 Apache Snapshots
=] Snapshots =] Codehaus Snapshots
ﬂ 3rd party 5 JBoss Releases
=] Central
4
I
4
Pl
Save Resat

Figure 6.16: Group Configuration Screen

Note that the order of the repositories listed in Ordered Group Repositories is important. When the
repository manager searches for a component in a group, it will return the first match. To reorder a
repository in this list, click and the drag the repositories and groups in the Ordered Group Repositories
selection list.

The order of repositories or other groups in a group can be used to influence the effective metadata that
will be retrieved from a repository group. We recommend placing hosted repositories higher in the list
than proxy repositories within the list. For proxy repositories the repository manager needs to periodically
check the remote for updates, which will incur more overhead than a hosted repository lookup.

We also recommend placing repositories with a higher probability of matching the majority of compo-
nents higher in this list. If most of your components are going to be retrieved from the Central Repository,
putting Central higher in this list than a smaller, more focused repository is going to be better for perfor-

Repository Management with Nexus 124/ 440

mance, as the repository manager is not going to interrogate the smaller remote repository for as many
missing components.

Once a repository group is configured it can be used from the client as discussed in e.g. Section 4.2,
Section 17.5, Section 18.5 or Section 16.6 and further repositories can be added easily.

Nexus Repository Manager ships with one group: public. The Public Repositories group uses the
Maven 2 repository format and combines the important external Central Repository with the hosted repos-
itories: 3rd Party, Releases, and Snapshots.

In Section 4.2 we configured Maven via the settings.xml to look for components in the public group man-
aged by the repository manager. Figure 6.16 shows the group configuration screen in the user interface.
In this figure you can see the contents of the Public Repositories group.

6.4 Managing Routing

Available in Nexus Repository Manager OSS and Nexus Repository Manager

Routing can be considered the internal activities the repository manager performs in order to determine
where to look for a specific component in a repository. The routing information has an impact on the
performance of component retrieval as well as determining the availability of components.

A large portion of the performance gains achievable with correct and optimized routing information is
configured by the repository manager itself with automatic routing, documented in Section 6.4.1. Fine
grained control and further customizations in terms of access provision can be achieved with some manual
routing configuration documented in Section 6.4.2.

6.4.1 Automatic Routing

Automatic routing is handled on a per repository basis. You can access the configuration and further
details in the Routing tab after selecting a repository in the list accessible via the Repositories item in the
Views/Repositories left-hand menu.

The routing information consists of the top two levels of the directory structure of the repository and
is stored in a prefixes.txt file. It allows the repository manager to automatically route only component

Repository Management with Nexus 125/ 440

requests with the corresponding groupId values to a repository, as found in the text file. This, in turns,
avoids unnecessary index or even remote repository access and therefore greatly improves performance.

The repository manager generates the prefixes.txt file for a hosted repository and makes it available for
remote downloads. Each deployment of a new component will trigger an update of the file for the hosted
repository as well as the prefix files for any repository groups that contain the hosted repository. You can
access it in the Routing tab of a hosted repository as displayed in Figure 6.17 by clicking on the Show
prefix file link on the right. In addition, the Publishing section shows the Status of the routing information,
a Message with further details, and the date and time of the last update in the Published On field.

Releases hosted maven2 Release In Service
Snapshots hosted maven2 Snapshot In Service
Releases

4= ndex Browse Storage Configuration Mirrars Routing Smart Prosy Summary Artifact U

Publishing

Status: Published.

Message: Prefix file published successfully.

Published on: Maon Mar 24 2014 10:50:40 GMT-0700 (PDT)

Show prefix file

Figure 6.17: Automatic Routing for a Hosted Repository

The Routing tab for a proxy repository displayed in Figure 6.18 contains the Discovery section. It displays
the Status and a more detailed Message about the prefix file access. The Last run field displays the date
and time of the last execution of the prefix file discovery. Such an execution can be triggered by pressing
the Update now button. Otherwise, the Update Interval allows you to trigger a new discovery every one,
two, three, six, nine or twelve hours or as a daily or weekly execution.

Repository Management with Nexus 126 / 440

Central proxy ' T2 ﬁ 35 mavenZ Release In Service hitp:/flocalhost:
Central
Browse Index Browse Remote Browse Storage Configuration Health Check Routing S5L
Publishing
Status: Published.
Message: Prefix file published successfully.
Published on: Thu Jul 10 2014 17:24:52 GMT-0700 (PDT) Shaw prefix file
™ Discovery
Status: Successful.
Message: Remaote publishes prefix file (is less than a day old), using it.
Last run: Thu Jul 10 2014 17:24:52 GMT-0700 (PDT)
Update interval: Daily R
Update now

Figure 6.18: Automatic Routing for a Proxy Repository

For a proxy repository, the prefix file is either downloaded from the remote repository or generation is
attempted by scraping the HTML directory listing of the remote repository. If a prefix file is published by
the remote it is always used. The scraping strategy only used in cases where the repository manager can
be sure the remote directory listing contains all available artifacts. For example, if the remote is hosted
repository on a Nexus Repository Manager, or a well known format such as a Subversion based repository
then the directory listing will be used if no prefix file is available.

The generation of the prefix file in all the repository managers deployments proxying each other greatly
improves performance for all repository manager instances. It lowers network traffic and load on the
servers, since failing requests and serving the respective HTTP error pages for a component that is not
found is avoided for each component. Instead, the regularly light weight download of the prefix file
establishes a good high-level knowledge of components available.

Automatic Routing is configured automatically brings significant performance benefits to all Nexus Repos-
itory Manager and Nexus Repository Manager OSS instances proxying each other in a network and on
the wider internet. It does not need to be changed apart from tweaking the update interval. To exercise
even finer control than provided by Automatic Routing use Routing as documented in Section 6.4.2.

Repository Management with Nexus 127/ 440

6.4.2 Manual Routing Configuration

Routes are like filters you can apply to groups in terms of security access and general component retrieval,
and can reduce the number of repositories within a group accessed in order to retrieve an component. The
administration interface for routes can be accessed via the Routing menu item in the View/Repositories
menu in the left-hand navigation panel.

Routes allow you to configure the repository manager to include or exclude specific repository content
paths from a particular component search when the repository manager is trying to locate a component in
a repository group. There are a number of different scenarios in which you might configure a route.

The most commonly configured scenario is when you want to make sure that you are retrieving compo-
nents in a particular group ID from a particular repository. This is especially useful when you want your
own organization’s components from the hosted Release and Snapshot repositories only.

Routes are applicable when you are trying to resolve a component from a repository group. Using routes
allows you to modify the repositories the repository manager consults when it tries to resolve a component
from a group of repositories.

Repository Management with Nexus 128 /440

Welcome Routing %

“ZRefresh () Add () Delete

Route Rule Type Group Repositories
*(com|erg)/somecompany/.” inclusive * Snapshots, Releases
Morg/some-ossl.* exclusive * Releases, Snapshots

Repository Route Configuration

URL Pattern ~/(com|arg)/somecampany/.* L]
Rule Type Inclusive Al ?]
Repository Group All Repository Groups | e
Ordered Route Repositories Available Repositories
=] Snapshots =] 3rd party
=] Releases =] Apache Snapshots
=] central

=] Central M1 shadow

iJ =] Codehaus Snapshats
4| =] Public Repositories

Save I Cancel J

Figure 6.19: Routing Configuration Screen

Figure 6.19 shows the Routing configuration screen. Clicking on a route will bring up a screen that will
allow you to configure the properties of a route. The configuration options available for a route are:

URL Pattern
The repository manager uses the URL Pattern will use to match a request. If the regular expres-
sion in this pattern is matched, the repository manager will either include or exclude the listed
repositories from a particular component query. In Figure 6.19 the two patterns are:

~/ (com|org) /somecompany/ . *
This pattern would match all paths that start with either /com/somecompany/ or /org/
somecompany/. The expression in the parenthesis matches either com or org, and the . *
matches zero or more characters. You would use a route like this to match your own organiza-
tion’s components and map these requests to the hosted Releases and Snapshots repositories.

~/org/some-oss/.x*
This pattern is used in an exclusive route. It matches every path that starts with /org/some—

Repository Management with Nexus 129 /440

oss/. This particular exclusive route excludes the local hosted Releases and Snapshots di-
rectory for all components that match this path. When the repository manager tries to resolve
components that match this path, it will exclude the Releases and Snapshots repositories.

(?!/org/some—-oss/.*x) .*
Using this pattern in an exclusive route allows you to exclude everything, except the "org/some-
oss" project(s). It uses a special negative matching regular expression.

Rule Type
Rule Type can be either inclusive, exclusive or blocking. An inclusive rule type defines the set of

repositories that should be searched for components when the URL pattern has been matched. An
exclusive rule type defines repositories which should not be searched for a particular component.
A blocking rule will completely remove accessibility to the components under the specific pattern
in a specified repository group.

Ordered Route Repositories
The repository manager searches an ordered list of repositories to locate a particular component.
This order only affects the order of routes used and not the order of the repositories searched. That
order is set by the order of the repositories in the group repository’s configuration.

In Figure 6.19 you can see the two dummy routes that are configured as default routes. The first route is an
inclusive route, and it is provided as an example of a custom route an organization might use to make sure
that internally generated components are resolved from the Releases and Snapshots repositories only. If
your organization’s group IDs all start with com. somecompany, and if you deploy internally generated
components to the Releases and Snapshots repositories, this Route will make sure that the repository
manager doesn’t waste time trying to resolve these components from public repositories like the Central
Repository or the Apache Snapshots repository.

The second dummy route is an exclusive route. This route excludes the Releases and Snapshots repos-
itories when the request path contains /org/some-oss. This example might make more sense if we
replaced some-oss with apache or codehaus. If the pattern was /org/apache, this rule is telling
the repository manager to exclude the internal Releases and Snapshots repositories when it is trying to
resolve these dependencies. In other words, don’t bother looking for an Apache dependency in your
organization’s internal repositories.

Tip
Exclusive rules will positively impact performance, since the number of repositories that qualify for lo-
cating the component, and therefore the search effort is reduced.

What if there is a conflict between two routes? The repository manager will process inclusive routes
before it will process the exclusive routes. Remember that routes only affect the repository managers

Repository Management with Nexus 130/ 440

resolution of components when it is searching a Group. When it starts to resolve a component from a
repository group it will start with the list of repositories in a group. If there are matching inclusive routes,
the repository manager will then take the intersection of the repositories in the group and the repositories
in the inclusive route. The order as defined in the group will not be affected by the inclusive route. The
repository manager will then take the result of applying the inclusive route and apply the exclusive route
to that list of repositories. The resulting list is then searched for a matching component.

One straightforward use of routes is to create a route that excludes the Central Repository from all searches
for your own organization’s hosted components. If you are deploying your own components to the repos-
itory manager under a groupld of org.mycompany, and if you are not deploying these components to
a public repository, you can create a rule that tells the repository manager not to interrogate Central for
your own organization’s components. This will improve performance because the repository manager
will not need to communicate with a remote repository when it serves your own organization’s compo-
nents. In addition to the performance benefits, excluding the Central Repository from searches for your
own components will reduce needless queries to the public repositories.

Tip

This practice of defining an inclusive route for your internal components to only hit internal repositories
is a crucial best practice of implementing a secure component management in your organization and
a recommended step for initial configuration of the repository manager. Without this configuration,
requests for internal components will be broadcasted to all configured external proxy repositories. This
could lead to an information leak, where e.g., your internet traffic reveals that your organization works on
a component with the component coordinates of com.example.website:secret-feature:
1.0.

In addition to defining inclusive and exclusive routes, you can define blocking routes. A blocking route
can be created by creating a route with no repositories in the ordered list of repositories. It allows you to
completely block access to components with the specified pattern(s) from the group. As such, blocking
routes are a simplified, coarse-grained access control.

Tip
Check out Chapter 10 for fine-grained control of component availability and use blocking routes spar-
ingly.

To summarize, there are creative possibilities with routes that the designers of Nexus Repository Manager
may not have anticipated, but we advise you to proceed with caution if you start relying on conflicting or
overlapping routes. Use routes sparingly, and use coarse URL patterns. Remember that routes are only
applied to groups and are not used when a component is requested from a specific repository.

Repository Management with Nexus 131 /440

6.5 Managing Scheduled Tasks

Available in Nexus Repository Manager OSS and Nexus Repository Manager

The repository managerss allows you to schedule tasks that will be applied to all repositories or to specific
repositories on a configurable schedule. Use the Scheduled Tasks menu item in the Administration menu
to access the screen, shown in Figure 6.20, that allows you to manage your Scheduled Tasks.

Scheduled Tasks X

o Refresh (@) Add (B Run @ Delete

Enabled MName - Type Status Schedule MextRun LastRun Last...
frue BackupConfig Backup all Nexus Co... Wailing daily Tue Aug... nia nfa
frue EmpyTrashByHand Empty Trash Waiting manual nia na nia
frue GetThemAl Download Indexes Walling weekly Mon Au... nla nia
rug Health Check: central Check for new report... Walling hourly Tue Aug... Mon Au... OK[1s]
frue Health Check: jboss-... Check for new report... Waiting hourly Tue Aug... Mon Au... Ok[1s]

Scheduled Task Configuration

Enabled e
Name BackupConfig @
Task Type ~
Task Settings
Backups to Keep 5 (2}
Alert Emaill (2]
Recurrence Dally M| @
Schedule Settings
Start Date 0g/16/2012 [@
Recurring Time 11:08 v | GMT-0700 (PDT) &

Save Cancel

Figure 6.20: Managing Scheduled Tasks

The list interface allows you to Add new tasks and Run, Cancel, and Delete existing tasks as well as
Refresh the list with respective buttons above the list.

When creating or updating a scheduled task, you can configure the following properties:

Repository Management with Nexus 132 /440

Enabled
Enable or disable a specific task.

Name
Provide a name to identify the task in the user interface and log files.

Task Type

Specify the type of action the scheduled task executes. The list of available task types is documented
in more detail below.

Task Settings
Configure the task settings specific to the selected task type. Tasks affecting a repository have a

setting called Repository/Group that allows you to let the task affect all repositories and groups or
only a specific one.

Alert Email
Configure a notification email for task execution failures. If a scheduled task fails a notification

email containing the task identifier and name as well as the stack trace of the failure will be sent to
the configured email recipient.

Recurrence
Configure the schedule for the task executions. Available choices are Manual, Once, Hourly, Daily,
Weekly, Monthly and Advanced. All choices provide a custom user interface for scheduling the
specific recurrence. Weekly scheduling requires at least one day of the week to be selected. The
Advanced setting allows you to provide a CRON expression to configure more complex schedules.

The following kinds of scheduled task types are available:

Backup All Configuration Files
This scheduled task will archive the contents of the sonatype-work/nexus/conf directory.
Once a backup has been run, the contents of the backup will be available in sonatype-work/
nexus/backup in a series of ZIP archives that use a datetimestamp in the filename. This task is
a feature of Nexus Repository Manager.

Backup npm metadata database
A backup archive of the npm metadata database is created in the sonatype-work/nexus/
backup/npm with a date and time stamp in the filename. This backup is intended to be used for
disaster recovery in case the npm metadata database got corrupted.

Delete npm metadata

This task allows you to completely delete the npm metadata of a npm repository and should be only
run manually upon advice from Sonatype support.

Download Indexes

This scheduled task causes the repository manager to download indexes from remote repositories
for proxied repositories. The Download Remote Indexes configuration also needs to be enabled on
the proxy repository.

Repository Management with Nexus 133 /440

Download NuGet Feed
This task allowed you to download the feed for a NuGet proxy repository. It should not be used
any longer, since it has negative impacts on the performance of your Nexus Repository Manager or
Nexus Repository Manager OSS as well as Nuget.org. With Nexus Repository Manager 2.11.3+
it has been changed to perform no operation at all to avoid this problem. It is safe to remove any
executions of this task.

Drop Inactive Staging Repositories

Staging repositories can be dropped by user interaction or automated systems using the Nexus Stag-
ing Maven Plugin or Ant Task or a REST API call. Heavy users of the repository manager staging
features observe that some staging and build promotion repositories are inevitably left behind. This
scheduled task can be used to drop all these repositories. You can configure the duration of inac-
tivity to include the days after the repositories are dropped as well as the status of the repositories.
Any change of the staging repository like a state change from open to closed to promoted or re-
leased as well other changes to the repository meta data like a description update are counted as
an activity. You can configure to Scan open repositories, Scan closed repositories, Scan promoted
repositories and Scan released repositories for inactivity and therefore potentially drop them with
this task. This will allow you to avoid accumulating a large number of stale staging repositories.

Empty Trash
The Evict and Purge actions do not delete data from the repository manager working directory.
They simply move data to be cleared or evicted to a trash directory under the work directory. This
task deletes the data in this trash directory older than the number of days specified in the task setting
Purge items older than (days).

Evict Unused Proxied Items From Repository Caches
This scheduled task tells the repository manager to delete all proxied items that haven’t been "used"
(referenced or retrieved by a client) in a number of days as specified in Evict items older than
(days). This can be a good job to run if you are trying to conserve storage space and do not need
all of the components in the future e.g., to reproduce old builds without renewed retrieval. This
is particularly useful for a personal repository manager deployment with a large change rate of
components combined with limited diskspace.

Expire Repository Caches
Repositories have several caches to improve performance. This task expires the caches causing the
repository manager to recheck the remote repository for a proxy repository or the file system for
a hosted repository. You can configure the repository or group to be affected with the task setting
Repository/Group. Additionally you can provide a Repository Path to configure the content that
should be expired.

Mirror Eclipse Update Site
The P2 plugin allows you to mirror Eclipse update sites. This task can be used to force updates of
repositories that went out of sync.

Optimize Repository Index
To speed up searches in the repository manager, this task tells the internal search engine to optimize
its index files. This has no affect on the indexes published by the repository manager. Typically,
this task does not have to run more than once a week.

Repository Management with Nexus 134 /440

Publish Indexes
Just as Maven downloads an index from a remote repository, the repository manager can publish an
index in the same format. This will make it easier for people using m2eclipse or Nexus Repository
Manager to interact with your repositories.

Purge Nexus Timeline
The repository manager maintains a lot of data that relates to the interaction between itself, proxied
remote repositories, and clients. While this information can be important for purposes of auditing,
it can also take up storage space. Using this scheduled task you can tell the repository manager to
periodically purge this information. The setting "Purge Items older than (days)" controls the age of
the data to be deleted.

Purge Orphaned API Keys
This scheduled tasks will delete old, unused API keys generated and used by various plugins. For
example, it should be scheduled when using the User Token feature or NuGet repositories. It will
purge orphaned API keys e.g., after users reset their token and should be scheduled to run regu-
larly, specifically when internal security policies for password resets and you are using an external
security provider like LDAP with this requirement for resets to access the repository manager.

Rebuild Maven Metadata Files
This task will rebuild the maven-metadata.xml files with the correct information and will also vali-
date the checksums (.mh5/.shal) for all files in the specified Repository/Group. Typically this task
is run manually to repair a corrupted repository.

Rebuild NuGet Feed
If you are using NuGet, pushing your components into a NuGet hosted repository and are proxying
that repository to other users, this task can be used to rebuild the feed.

Rebuild P2 metadata and Rebuild P2 repository
These tasks can be used to rebuild the metadata or the full repository with a P2 format. You can
specify a Repository/Group or a Repository Path to determine which content to affect.

Rebuild hosted npm metadata
The npm metadata for a hosted repository can be rebuilt based on the components found in the stor-
age of a hosted repository. The task can serve as a recovery tool in cases where the npm metadata
database got corrupted or the component storage was created manually or via some external process
like e.g. an rsync copying.

Reconcile Repository Checksums
This task was used to repair checksums and should only be used upon specific advise from Sonatype
support.

Remove Releases From Repository
In many use cases of a repository manager, it is necessary to keep release components for long
periods of time or forever. This can be necessary for reproducibility reasons, in order to ensure
users have access to old versions or even just for audit or legal reasons. However, in other use
cases, there is no value in keeping old release components. One example would be a when using a

Repository Management with Nexus 135/ 440

continuous delivery approach onto a single deployment platform with no roll back support. In other
cases, it could also be impractical due to the mere number and size of the release components.

This scheduled task allows you to trigger the deletion of release components, supporting these use
cases taking care of meta data updates, and removing the need to manually delete the components
or use an external system to trigger the deletion.

To configure the task, you specify the repository where release components are to be deleted as well
as the number of component versions to keep for a specific groupld and artifactld coordinate. The
task generates a list of all versions of a component for each groupld and artifactld coordinate combi-
nation and sorts it according to the version number. The ordering is derived by parsing the version
string and supports sematic versioning with additional semantics for specific classifiers. Further
details can be found in the documentation for the implementing class GenericVersionScheme.

Optionally, the Repository Target parameter can be used to narrow down the content of the repos-
itory that is analyzed, to determine if any deletion should occur. Choosing A11 (Maven2) is
suitable to cause all Maven 2-formatted repositories to be analysed. If you want to only target a
specific groupld and artifactld combination or a number of them you can create a suitable repository
target as documented in Section 6.14 and use it in the configuration of the scheduled task.

Remove Snapshots from Repository
Often, you will want to remove snapshots from a snapshot repository to preserve storage space. This
task supports this deletion for time stamped snapshots as created by Maven 3.x in a deployment
repository. Note that configuring and running this job is not enough to reclaim disk space. You
will also need to configure a scheduled job to empty the trash folder. Files are not deleted by the
Remove Snapshots job. They are only moved into the trash folder. When you create a scheduled
task to remove snapshots, you can specify the Repository/Group to affect as well as:

Minimum snapshot count
This configuration option allows you to specify a minimum number of snapshots to preserve
per component. For example, if you configured this option with a value of 2, the repository
manager will always preserve at least two snapshot components. A value of -1 indicates that
all snapshots should be preserved.

Snapshot retention (days)
This configuration option allows you to specify the number of days to retain snapshot compo-
nents. For example, if you want to make sure that you are always keeping the last three day’s
worth of snapshot components, configure this option with a value of 3. The minimum count
overrides this setting.

Remove if released
If enabled and a released component with the same GAV coordinates is detected all snapshots
will be removed.

Grace period after release (days)
The configuration Remove if released causes snapshots to be deleted as soon as the scheduled
task is executed. This can lead to builds that still reference the snapshot dependency to fail.
This grace period parameter allows you to specify a number of days to delay the deletion,
giving the respective projects referencing the snapshot dependency time to upgrade to the
release component or the next snapshot version.

http://semver.org
http://sonatype.github.io/sonatype-aether/apidocs/org/sonatype/aether/util/version/GenericVersionScheme.html

Repository Management with Nexus 136 / 440

Delete immediately
If you want to have components deleted directly rather than moved to the trash, you can enable
this setting.
When doing regular deployments to a snapshot repository via a CI server, this task should be
configured to run regularly.

Remove Unused Snapshots From Repository
This task allows you to have SNAPSHOT versions deleted from a Maven repository after they have
not been requested for a specified number of days.

Repair Repositories Index
In certain cases it might be required to remove the internal index as well as the published ones of
a repository. This task does that and then rebuilds the internal index by first trying to download
remote indexes (if a proxy repository), then scanning the local storage and updating the internal
index accordingly. Lastly, the index is published for the repository as well. There should be no
need to schedule this task. But when upgrading the repository manager, the upgrade instructions
may sometimes include a manual step of executing this task.

Rubygems: Purge Broken Files on Proxy
This task allows you to delete the broken metadata of a proxy gem repository.

Rubygems: Rebuild Hosted Index Files
This task can be used to get the metadata file for a hosted gem repository recreated based on the
actual components found in the repository.

Rubygems: Synchronize Proxied Index File
This task can be used to force an update of the metadata in a Gem proxy repository and cause it to
be synchronized with the metadata in the remote repository.

Synchronize Shadow Repository
This service synchronizes a shadow (or virtual) repository with its master repository. This task
is only needed when external changes affected a source repository of a virtual repository you are
using.

Update Repositories Index
If files are deployed directly to a repository’s local storage (not deployed through the user interface
or client tools), you will need to instruct the repository manager to update its index. When executing
this task, the repository manager will update its index by first downloading remote indexes (if
a proxy repository) and then scan the local storage to index the new files. Lastly, the index is
published for the repository as well. Normally, there should be no need to schedule this task. One
possible exception would be if files are deployed directly to the local storage regularly.

Yum: Generate Metadata
The metadata for a yum repository is created and maintained by the createrepo tool. This scheduled
task allows you to run it for a specific repository and optionally configure the output directory.

Beyond these tasks any plugin can provide additional scheduled tasks, which will appear in the drop-down
once you have installed the plugin.

http://createrepo.baseurl.org/

Repository Management with Nexus 137/ 440

The Evict and Purge actions do not delete data from the repository manager working directory. They
simply move data to be cleared or evicted to a trash directory under the work directory. If you want to
reclaim disk space, you need to clear the Trash on the Browse Repositories screen. If something goes
wrong with a evict or clear service, you can move the data back to the appropriate storage location from
the trash. You can also schedule the Empty Trash service to clear this directory on a periodic basis.

Tip

In order to keep the heap usage in check it is recommended that you schedule an "optimize indexes"
task to run weekly. A number of other maintenance tasks should also be scheduled for production
deployments.

Setting up scheduled tasks adapted to your usage of the repository manager is an important first step. Go
through the list of task types and consider your usage patterns of the repository manager. Also update your
scheduled tasks when changing your usage. E.g., if you start to regularly deploy snapshots by introducing
continuous integration server builds with deployment.

6.6 Accessing and Configuring Capabilities

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

Capabilities are features of the repository manager and plugins that can be configured by a user in the
generic administration view accessible in the left-hand navigation menu Administration under Capabili-
ties.

Warning

In many cases you will not need to configure anything in Capabilities unless explicitly instructed
to do so by the Sonatype support team. Execute any capability changes with caution, potentially
backing up your configuration before proceeding.

Nexus Repository Manager ships with a number of capabilities preinstalled and allows you to enable/dis-
able them. An example capability is Outreach Management displayed in Figure 6.21. The capabilities
management interface supports adding new capabilities by pressing the New button, copying a selected
capability from the list by pressing the Duplicate button and deleting a selected capability with the Delete
button. Pressing the Refresh button updates the list of capabilities. The list of capabilities can be filtered

Repository Management with Nexus 138 /440

with the search input box in the header of the list and sorted by the different columns by pressing a column
header. The list uses the following columns:

Status
The status column does not have a title. Enabled capabilities have a green checkmark added on top
of a blue icon. If an enabled capability is not fully operational the icon displays a warning sign on
top of the blue icon and the entire row is surrounded with a red border; you can find out further
information in a warning message below the list of the capabilities and above the individual tabs.
Disabled capabilities use a greyed out icon.

Type
The Type column provides the specific type of a capability in the list.

Category
The Category is optional and details the wider context the capability belongs to.

Repository
The Repsitory value is optional and references the repository for which the specific capability is
configured.

Description
The Description column contains further descriptive information about the capability.

Notes
The Notes column can contain user created notes about the capability.

Repository Management with Nexus 139 /440

Welcome Capabilitieas %
2, Refresh 55 New ¢ Duplicate £ Delete
Type = Category Repository Description Notes
[‘& Branding confibranding.png

] Outreach: Management

[.& S5L: Repository Security Central Central

[Q% SSL: Repository Security JBoss Rel... JBoss Releases

[‘& Secure Central Security Ready: true, Tracked: 1 Automatically added o..
fos Smart Proxy: Identity Smart Proxy 21EBG831-CES2380C-147TBF1CD-....

i1 Outreach : Management

Summary Settings Status About

Enabled L2

Base URL hitp:/ilinks sonatype.com/products/nexus/outreach 2]

Disable Caching L2

Override URL 2]
Save Discard

Figure 6.21: Capabilities Management Interface with the Outreach Management Details Visible

Every capability can be inspected and configured by selecting it in the list and using the tabs underneath
the list.

The Summary tab displays the Type of the capability as well as optionally the Description, the Category
and the Repository. The Notes field can be used to provide a descriptive text about the capability or any
other notes related to it and can be persisted by pressing the Save button. The Discard link can be used to
reset any changes in the tab.

The Settings tab allows you to activate or deactivate the capability with the Enabled checkbox. Below this
checkbox, each capability type has specific additional configuration parameters available. Mousing over
the help icon beside the input field or checkbox reveals further information about the specific parameter.
Once you have completed the configuration, press the Save button. The Discard link can be used to reset
any changes in the tab.

The Status tab displays a text message that details the status of the capability and any potential problems
with the configuration. Depending on the capability, the reasons can vary widely. For example, the Secure

Repository Management with Nexus 140/ 440

Central capability requires the repository manager to run on a JVM with specific security features. If the
JVM is not suitable, an error message with further details is displayed in the Status column.

The About tab displays a descriptive text about the purpose of the capability.

Creating a new capability by pressing the New button will display a new form allowing you to configure
the capability in a dialog. The Type drop-down allows you to decide what capability to create, and a
selection changes the rest of the available information and configuration in the dialog. You can configure if
the capability should be enabled with the Enabled checkbox. Once you have completed the configuration,
press Add and the capability will be saved and appear in the list.

Many of the built-in capabilities and plugins can be configured in the Capabilities administration section
but also in other more user friendly, targeted user interface sections, e.g., the user token feature admin-
istrated by using the interface available via the User Token menu item in the Security left-hand menu as
well as by editing the user token capability. Other capabilities are internal to repository manager func-
tionality and sometimes managed automatically by the responsible plugin. Some optional configuration
like the branding plugin is only done in the capabilities administration. The branding plugin allows the
customization of the icon in the top left-hand corner of the user interface header and is described in
Section 6.7.

6.7 Customizing the User Interface with Branding

Auvailable in Nexus Repository Manager only

The branding plugin is part of Nexus Repository Manager and allows you to customize your repository
manager instance by replacing the default Nexus Repository Manager logo in the top left-hand corner of
the header with an image of your choice.

You can configure it by adding the Branding capabililty as documented in Section 6.6 and enabling it.
By default, the branding plugin will look for the new logo in a file called branding.png in your
data directory’s conf folder. By default, the location is therefore sonatype-work/nexus/conf/
branding.png. The new logo needs to be a PNG image. To blend in well in the U, it is recommended
that it is of 60 pixels height and has a transparent background.

If it fails to find a new logo, the plugin will fall back to using the default logo.

Prior to Nexus Repository Manager 2.7, the branding plugin was an optional plugin of Nexus Repository
Manager and needed to be installed following the documentation in Section 22.1. In this case you needed

Repository Management with Nexus 141 /440

to add a branding.image.path property to the nexus.properties file in SNEXUS_HOME/conf/-

branding.image.path=/data/images/nexus_logo.png

6.8 Configuring Outreach Content in Welcome Tab

Available in Nexus Repository Manager OSS and Nexus Repository Manager

The Outreach Plugin is installed and enabled by default in Nexus Repository Manager OSS and Nexus
Repository Manager. It allocates space underneath the search feature on the Welcome tab for linking to
further documentation and support resources. This data is retrieved from Sonatype servers.

In a case where this outgoing traffic from your repository manager instance or the resulting documentation
and links are not desired, the plugin can be disabled. The plugin can be disabled in the settings for the
Outreach:Management capability as documented in Section 6.6.

You can safely remove the plugin as well without any other negative side effects. To do so, simply
remove the nexus-outreach-plugin-X.Y.Z folder in $NEXUS_HOME/nexus/WEB-INF/plugin-repository/
and restart your repository manager instance.

6.9 Network Configuration

Available in Nexus Repository Manager OSS and Nexus Repository Manager

By default, the repository manager listens on port 8081. You can change this port, by changing the value
in the SNEXUS_HOME/conf/nexus.properties file shown in Contents of conf/nexus.properties.
To change the port, stop the repository manager, change the value of applicationPort in this file, and then
restart it. Once you do this, you should see a log statement in $NEXUS_HOME/logs/wrapper.log
telling you that the repository manager is listening on the altered port.

Contents of conf/nexus.properties

Sonatype Nexus
#

This is the most basic configuration of Nexus.

Repository Management with Nexus 142/ 440

Jetty section
application-port=8081
application-host=0.0.0.0
nexus-webapp=${bundleBasedir}/nexus
nexus—-webapp-context-path=/nexus

Nexus section
nexus—-work=${bundleBasedir}/../sonatype-work/nexus
runtime=${bundleBasedir}/nexus/WEB-INF

6.10 Logging

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

You can configure the level of logging for the repository manager and all plugins as well as inspect the
current log using the user interface. Access the Logging panel by clicking on the Logging menu item
in the Administration submenu in the main menu. Clicking on this link will display the panel shown in
Figure 6.22.

Welcome Logging %
Uﬂ Allows changing logging configuration and viewing the current log.
Loggers | Log
2, Refresh [add [&) Resat
Name « Level
ROOT INFO
[5] com.atlassian.crowd.service client ClientProperties/impl WARN
[5] com.google.inject.internal.util. Stopwatch INFO
[5] com.sonatype centralsecure INFO
[5] com.sonatype.index INFO
[5] com.sonatype nexus.crowd INFO
com.sonaty pe.nexus.index INFO
[5] com.sonatype nexus.plugins heatthcheck INFO

Figure 6.22: The Logging Panel with the Loggers Configuration

Repository Management with Nexus 143/ 440

The Loggers tab in the panel allows you to configure the preconfigured loggers as well as add and remove
loggers. You can modify the log level for a configured logger by clicking on the Level value e.g., INFO.
It will change into a drop-down of the valid levels including OFF, DEFAULT, INFO and others.

If you select a row in the list of loggers, you can delete the highlighted logger by pressing the Remove
button above the list. The Add button beside it can be used to create new loggers in a dialog. You will
need to know the logger you want to configure. Depending on your needs you can inspect the source of
Nexus Repository Manager OSS and the plugins as well as the source of your own plugins to determine
the related loggers or contact Sonatype support for detailed help. In addition, it is important to keep in
mind that some loggers will change between repository manager and plugin versions used.

The Reset button allows you to remove all your custom loggers and get back to the setup shipped with the
repository manager.

The loggers configured in the user interface are persisted into sonatype-work/nexus/conf/log
back-overrides.xml and override any logging levels configured in the main log file 1ogback—
nexus.xml as well as the other 1ogback—x files. If you need to edit a logging level in those files, we
suggest to edit the overrides file. This will give you access to edit the configuration in the user interface
at a later stage and also ensure that the values you configure take precedence.

The ROOT logger level controls how verbose the logging is in general. If set to DEBUG, logging will be
very verbose printing all log messages including debugging statements. If set to ERROR, logging will be
far less verbose, only printing out a log statement if the system encounters an error. INFO represents an
intermediate amount of logging.

Tip
When configuring logging, keep in mind that heavy logging can have a significant performance impact
on an application and any changes in the user interface trigger the change to the logging immediately.

In Nexus Repository Manager releases prior to 2.7, logging configuration needed to be done by editing
the logback—-nexus.xml file found in sonatype-work/nexus/conf.

Once logging is configured as desired, you can inspect the impact of your configuration on the Log tab. It
allows you to copy the log from the server to your machine by pressing the Download button. The Mark
button allows you to add a custom text string into the log, so that you can create a reference point in the
log file for an analysis of the file. It will insert the text you entered surrounded by * symbols as visible in
Figure 6.23.

Repository Management with Nexus 144/ 440

Welcome Logging *

AMllcws changing logging configuration and viewing the current log. For more information see the book
ages for logging configuration

Loggers Log
=
<%, Refresh [2] Download | 4% Mark Refresh manually v | Last25KB v
2013-10-18 12:38:03 TRACE [ng/loggers/RODT] - org.scnatype.sisu.goodies.common.ioc.FileReplad
2013-10-18 12:38:03 TRACE [ng/loggers/RODT] - org.scnatype.sisu.goodies.common.io.FileReplad
2013-10-18 12:38:03 DEBUG [ng/loggers/RODT] - org.scnatype.nexus.log.internal.LogbackDogHand
2013-10-18 12:38:03 TRACE [ng/loggers/RODT] - org.scnatype.sisu.goodies.common.io.FileReplad
2013-10-18 12:38:03 TRACE [ng/loggers/RODT] - org.scnatype.sisu.goodies.common.io.FileReplad
2013-10-18 12:38:03 TRACE [ng/loggers/RODT] - org.scnatype.sisu.goodies.common.io.FileReplad
2013-10-18 12:45:23 IKFO [tpl39466651-147] - org.scnatype.nexus.logging.rest.logRescurce -

FEFEERFREFFERFRE TS

* Leaving a Mark =
AR EEE LR SRt

2013-10-18 12:45:47 INFD [rowy-3-thread-1] - org.scnatype.nexus.proxy.storage.remote.httpel
2013-10-18 12:45:47 INFD [rowy-3-thread-2] - org.scnatype.nexus.proxy.storage.remote.httpel
2013-10-18 12:45:47 INFD [oxy-3-thread-12] - org.scnatype.nexus.proxy.storage.remote.httpel
2013-10-18 1Z:45:47 TKFD [roxy-3-thread-4] - arq.ﬂanatvpe.nexuﬂ.praxv.ﬂtaraqe.rEmaLE.hLLEEJ

Figure 6.23: Viewing the Log with a Mark

The Refresh button on the left triggers an immediate update of the log. The refresh drop-down on the
right can be used to trigger updates of the log in regular time intervals or manually. The size drop-down
beside it allows you to control the size of the log snippet displayed in the user interface.

6.11 Plugins and the REST API

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

As documented in Section 22.1, Nexus Repository Manager and Nexus Repository Manager OSS are
built as a collection of plugins supported by a core architecture and additional plugins can be installed.

You can use the Plugin Console to list all installed plugins and browse REST services made available by
the installed plugins. To open the Plugin Console, click on the Plugin Console link in the Administration
menu in the left-hand main menu.

Once you open the Plugin Console, you will see a list of plugins installed in your repository manager
installation. Clicking on a plugin in this list will display information about the plugin including name,
version, status, a description, SCM information about the plugin, and the URL of the plugin’s project web
site and links to the plugin documentation.

Repository Management with Nexus 145/ 440

Welcome Plugin Console %

%, Refresh

Name « Version Description Status
MNexus Archive Browser Plugin 2821 Mliows browsing and streaming arti... Activated
Nexus CLM Plugin 2820 Provides integration with Sonatype... Activated
Nexus Capabilities Plugin 2820 Mlliows Nexus to define and manag... Activated
Mexus Configuration Backup Plugin 28201 Mdds a task that can periedically b... Activated
MNexus Core AP| (Restlet 1.x Plugin) 26.2-1 Provides Nexus Core REST AP MActivated
Nexus Crypto Provider Plugin 2820 Provides support for cryptography... Activated
Nexus Dependency Report Plugin 2820 Display a list of dependencies for ... Activated
Mexus Enterprise LDAP Plugin 28201 Mdds an LDAP realm to Nexus. Mctivated
Mexns FetlS3 L 2R2.Mm Prowvides a Nexus user interfacs b Auetivated

Mexus Core API (Restlet 1.x Plugin)

MName Nexus Core API (Restlet 1.x Plugin)

Version 2.6.2-01

Status Activated

Description Provides Nexus Core REST APL

SCM Version 4f0Bcf0b9b1dfd59¢cb1B12e79650b6f299824 %922
SCM Timestamp N/A

Site http://links.sonatype.com/products/nexus/oss/home

Documentation Nexus Core APT (Restlet 1.x)

Figure 6.24: Plugin Console

All the functionality in the user interface is accessing the REST API’s provided by the different plugins.
An example for the plugin documentation is the main documentation for the core Nexus API linked off
the Nexus Restlet 1.x Plugin from Figure 6.24 and displayed in Figure 6.25

Nexus Core APl (ResTLET 1.x PLuGIN)
REST API

& Home

REST Resources

This APl supports a Bepresentationzl State Transfer (REST) model for accessing a set of resources through a fixed
set of operations, The following resgurces are accessible through the RESTUl model:

s Jfall repositaries

s Jartifact/maven)resabve

Figure 6.25: Documentation Website for the Core REST API

You can use the REST API to integrate the repository manager with your external systems.

Repository Management with Nexus 146 / 440

If your external integration uses Java, or is otherwise JVM based, then you can use the Nexus Repository
Manager client using the dependency from Nexus Client Core Dependency for Maven Projects with the
version corresponding to your repository manager version.

Nexus Client Core Dependency for Maven Projects

<dependency>
<groupId>org.sonatype.nexus</groupIld>
<artifactId>nexus-client—-core</artifactId>
<version>2.12.1-01</version>

</dependency>

Examples of using the client library can be found in the Nexus Maven Plugins or the Nexus Ant Tasks.

The REST API can be invoked from many other programming and scripting languages. A simple example
of using the curl command in a shell script is displayed in A curl Invocation Loading the List of Users
from the repository manager.

A curl Invocation Loading the List of Users from the repository manager

curl -X GET -u admin:adminl23 http://localhost:8081/nexus/service/local/ ¢+
users

6.12 Managing Security

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

Nexus Repository Manager and Nexus Repository Manager OSS use a role-based access control (RBAC)
system that gives administrators very fine-grained control over who can read from a repository (or a subset
of repositories), who can administer the server, and who can deploy to repositories. The security model
in the repository manager is also so flexible as to allow you to specify that only certain users or roles can
deploy and manage components in a specific repository under a specific groupld or asset class. The default
configuration of Nexus Repository Manager and Nexus Repository Manager OSS ships with four roles
and four users with a standard set of permissions that will make sense for most users. As your security
requirements evolve, you’ll likely need to customize security settings to create protected repositories for
multiple departments or development groups. Nexus Repository Manager and Nexus Repository Manager
OSS provide a security model which can adapt to any scenario. The security configuration is done via
menu items in the Security submenu in the left-hand main menu.

https://github.com/sonatype/nexus-maven-plugins
https://github.com/sonatype/nexus-ant-tasks

Repository Management with Nexus 147/ 440

The RBAC system is designed around the following four security concepts:

Privileges
Privileges are rights to read, update, create, or manage resources and perform operations. The
repository manager ships with a set of core privileges that cannot be modified, and you can create
new privileges to allow for fine-grained targeting of role and user permissions for specific reposito-
ries.

Targets
Privileges are usually associated with resources or targets. A target can be a specific repository or
a set of repositories grouped in something called a repository target. A target can also be a subset
of a repository or a specific set of assests within a repository e.g. all javadoc archives only. Using
a target you can for example also apply a specific privilege to a single groupld and all components
using it.

Roles
Collections of privileges can be grouped into roles to make it easier to define collections of privi-
leges common to certain classes of users. For example, deployment users will all have similar sets
of permissions. Instead of assigning individual privileges to individual users, you use roles to make
it easier to manage users with similar sets of privileges. A role has one or more privileges and/or
one or more roles.

Users
Users can be assigned roles and will model the individuals who will be logging into the repository
manager and reading, deploying, or managing repositories.

6.13 Managing Privileges

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

You can access the configuration of privileges via the Privileges menu item in the Security submenu in
the left-hand main menu.

The repository manager has three types of privileges:

* application privileges - covers actions a user can execute in the user interface,

* repository target privileges - governs the level of access a user has to a particular repository or repository
target, and

Repository Management with Nexus 148/ 440

* repository view privileges - controls whether a user can view a repository

Behind the scenes, a privilege is related to a single REST operation and method like create, update, delete,
read.

Welcome Privileges *

43, Refresh () Add... -

Mame - User... Type Target Repository Method

3rd party - (view) false Repository View 3rd party

Administrator privilege (ALL) false Application *

All M1 Repositories - (create) false Repository Target All (Maven1) All Repositories create,read
All M1 Repositories - (delete) false Repository Target All (Maveni) All Repositories delate, read

All M1 Repositories - (read) false Repository Target All (Maven1) All Repositories read

Administrator privilege (ALL)
Name

Description

Type

Method

Permission

Figure 6.26: Managing Security Privileges

To create a new privilege, click on the Add. .. button in the Privileges panel and choose Repository Target
Privilege. Creating a privilege will load the New Repository Target Privilege form shown in Figure 6.27.
This form takes a privilege name, a privilege description, the repository to target, and a repository target.

Repository Management with Nexus 149 /440

Privileges %

% Refresh () Add... +

Name . User... Type Targeat Repository Method
New Repository Target Privilege Repository Target

3rd party - (view) false Repository View 3rd party

Administrator privilege (ALL) false Application *

All M1 Repositories - (create) false Repository Target All (Maven1) All Repositories create,read
All M1 Repositories - (delete) false Repository Target All (Maveni) All Repositories delete,read

New Repository Target Privilege

Name Apache Snapshat] L2

Description L2

Repaository Apache Snapshots (Repo) v | i)

Repository Target All (Maven2) v | &)
Save J Cancel ‘

Figure 6.27: Creating a New Repository Target Privilege

Once you create a new privilege, it will create four underlying privileges: create, delete, read, and update.
The four privileges created by the form in Figure 6.27 are shown in Figure 6.28.

Repository Management with Nexus 150/ 440

Privileges *

3 Refresh () Add... ~

MName . User... Type Target Repository Method
Mpache Snapshot - (create) true Repository Target All (Maven2) Apache Snaps... create,read
Apache Snapshot - (delete) true Repository Target All (Maven2) Apache Snaps... delete,read
Mpache Snapshot - (read) true Repository Target All (Maven2) Apache Snaps... read
Apache Snapshot - (update) true Repository Target All (Maven2) Apache Snaps... update read

API-Key Access

MName

€

Description

P

|
-

Type

|
=

P

Method

|
=

P

Permission

P

|
-

Figure 6.28: Create, Delete, Read, and Update Privileges Created

6.14 Managing Repository Targets

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

A Repository Target is a set of regular expressions to match on the path of components in a repository (in
the same way as the routing rules work). Nexus Repository Manager and Nexus Repository Manager OSS
are preconfigured with a number of repository targets and allows you to create additional ones. Access
the management interface visible in Figure 6.29 via the Repository Targets menu item in the left-hand
Views/Repositories sub menu.

Repository Management with Nexus 151 /440

Welcome Repository Targets =

3, Refresh () Add (S Delete

Name = * | Repository Type Pattarns

All (Mavent) maven

All (Maven2) maven2 A

All (nuget) nuget

All [obr) obr -

Al (p2) p2

All [site) site *

All but sources (Maven2) maven2 (7. "-sources.”).”

All Metadata (Maven2) maven? Cmaven-metadata’. xml.*
nexus-evalguide maven2 lorg/sonaty pe/nexus/examples/.”

Repository Target Configuration

Name All (Maven2)

Repasitary Type Mawvenz 7

Pattern Expression: [Add
Patterns | Remove

= -

= | Remove All

Save Cancel

Figure 6.29: Managing Repository Targets

Repository targets allow you to define, for example, a target called Apache Maven with a pattern of ~/
org/apache/maven/ . . This would match all components with a groupld of org.apache.maven and
any components within nested grouplds like org.apache.maven.plugins.

A pattern that would capture more components like all components with any part of the path containing
maven could be . xmaven. x.

The regular expressions can also be used to exclude components as visible with the pattern (2! .x—
sources. *) . * in Figure 6.30 where components with the qualifier -sources are excluded. The syntax
used for the expressions is the Java syntax, that is similar but not identical to the Perl syntax.

http://docs.oracle.com/javase/tutorial/essential/regex/

Repository Management with Nexus 152 /440

Welcome Repository Targets =

%, Refresh () Add (S Delete

Name -« Repository Type Patterns

All [site) site *

All but sources (Maven2) maven2 (?."-sources.”).”

All Metadata (Maven2) maven? Cmaven-metadata’. xml.*
nexus-eval-guide maven2 lorg/sonaty pe/nexus/examples/.*
NX3-301 maven? Slocomdsonaty paftraining/nxs 304/

Repository Target Configuration

Name All but sources (Maven2)
Repasitary Type Mawvenz 7
Pattern Expression: Add
Patterns Remove
ﬂ (?.*-sources.”).” Remove All
Save Cancel

Figure 6.30: Excluding Source Components from a Repository Targets

By combining multiple patterns in a repository target, you can establish a fine-grained control of compo-
nents included and excluded.

Once you have created a repository target, you can utilize it as part of your security setup. You can
add a new privilege that relates to the target and controls the CRUD (Create, Read, Update and Delete)
operations for artifacts matching that path. The privilege can even span multiple repositories. With this
setup you can delegate all control of components in org.apache.maven to a "Maven" team. In this way,
you don’t need to create separate repositories for each logical division of your components.

Repository targets are also be used for matching components for implicit capture in the Staging Suite as
documented in Chapter 11.

Repository Management with Nexus 153 /440

6.15 Managing Roles

Available in Nexus Repository Manager OSS and Nexus Repository Manager

Nexus Repository Manager and Nexus Repository Manager OSS ship with a large number of roles pre-
defined including Nexus Administrator Role, Nexus Anonymous Role, Nexus Developer Role, and Nexus
Deployment Role. Click on the Roles menu item under Security in the main menu to show the list of roles
shown in Figure 6.31.

Welcome Roles =
% Refresh (L) Add...~ (&) Delete

Name -« Realm Description

Atlas: Support Tools nexus Gives access to Atlas support tocls

Beta Tester nexus

Metrics Endpoints nexus Alicws access to metrics endpoints.

Nexus Administrator Role nexus Administration role for Nexus

Nexus Aneonymous Role nexus Ancnymous role for Nexus

Nexus APl-Key Access nexus APl-Key Access role for Nexus.

Nexus Deployment Role nexus Deployment role for Nexus

Nexus Developer Role nexus Developer role for Nexus

Nexus SSL: Trust Store Administr... nexus Gives access to manage Mexus SSL Trust Store
Nexus SSL: Trust Store View nexus Gives access to view Nexus S5L Trust Store
Nexus Yum Admin nexus Gives access to read versioned yum repositories and admi...
Nexus Yum Reader nexus Gives access to read versioned yum repositories

Figure 6.31: Viewing the List of Defined Roles

To create a new role, click on the Add. .. button, select Nexus Role and fill out the New Nexus Role form
shown in Figure 6.32.

Repository Management with Nexus

154/ 440

New Nexus Role
Role 1d
Name

Description

Role/Privilege Management

[T Ul Search
=] Checksum Search

[C] Ul Health Check Search Extras: Alerts

ComponentAnalyst
Component Analyst for Security and License Issues

Add

Save J Cancel I

Figure 6.32: Creating a New Nexus Role

When creating a new role, you will need to supply a Role ID, a Name and a Description. Roles are
comprised of other roles and individual privileges. To assign a role or privilege to a role, click on Add
button under Role/Privilege Management to access the Add Roles and Privileges dialog displayed in
Figure 6.33. It allows you to filter the paged displayed of all the available roles and privileges with a filter
text as well as narrowing the search to roles or privileges only. Using the filter and the paging you will be
able to find the desired role or privilege quickly.

Add Roles and Privileges
Fitter: | Enter filter text..

] Mame =

[] 01 Mlas: Support Tools
[7]7] Beta Tester

[] 01 Metrics Endpoints

[77 Mexus Administrator Role
[] 01 Mexus Anonymous Role

Page 1of20| b B

soosony

&

Apply Filter | Reset Filter
Description

Gives access to Atlas support tools

Allows access to metrics endpoints.
Administration role for Mexus

Anonymous role for Nexus
Displaying roles and privileges 1 - 25 of 485

OK ‘ Cancel J

Figure 6.33: The Dialog to Add Roles and Privileges

Repository Management with Nexus 155 /440

The built-in roles are managed by Nexus and cannot be edited or deleted. The role confirguration section
below the list is visible but disabled for these roles.

A role is comprised of other roles and individual privileges. To view the component parts of a role, select
the role in the Roles list and then choose the Role Tree tab as shown in Figure 6.34.

Welcome Roles *

3 Refresh () Add...~ (&) Delete

Mame - Realm Description

MNexus Administrator Role nexus Administration role for Mexus
Mexus Anonymous Role Nexus Anonymous role for Nexus
Mexus APl-Key Access nexus APl-Key Access role for Mexus.

Nexus Anonymous Role

Configuration Role Tree

% Refresh

=l &= Nexus Anonymous Role
|__J Ul Archive Browser
|__| Ul: Health Check {Summary)
= |_J Ul: Repository Browser
= |__|Ul: Dependency Report
5 Dependency Report (read)
5 Browse Remote Repository - (read)
5 Read Repository Status

Figure 6.34: Viewing a Role Tree

Tip

With the Repository Targets, you have fine-grained control over every action in the system. For exam-
ple, you could make a target that includes everything except sources (. (?!-sources) \.x) and
assign that to one role while giving yet another role access to everything. Using these different access
roles e.g., you can host your public and private components in a single repository without giving up

control of your private components.

Repository Management with Nexus 156 / 440

6.16 Managing Users

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

Nexus Repository Manager and Nexus Repository Manager OSS ships with three users: admin, anony-
mous, and deployment. The admin user has all privileges, the anonymous user has read-only privileges,
and the deployment user can both read and deploy to repositories. If you need to create users with a more
focused set of permissions, you can click on Users under Security in the left-hand main menu. Once you
see the list of users, you can click on a user to edit that specific user’s First Name, Last Name and Email.
Editing a users Status allows you to activate or disable a user altogether. You can also assign or revoke
specific roles for a particular user.

Welcome Roles Users %

% Refresh () Add...~ (&) Delete [All Configured Users ~

User ID Realm | First Name - Last Name Ermail Status Roles

deployment default Deployment User changeme1@yourcompany.com Active Repo: All Repositories (Full C...
admin default GEMERIC ADMIN nexus-admins{@example.com Active Repo: All Repositories (Full C...
manfred default Manfred Moser manfred@sonatype.com Active Repo: All Repositories (Full C....
ancnymous default Nexus Anonymous User changeme2@yourcompany.com Active Nexus Anonymous Role, Rep...
admin

Config Privilege Trace Role Tree User Token

User ID

First Name GENERIC

Last Name ADMIN

Email nexus-admins@example.com

Status Active -
Role Management Add

. MNexus Administrator Role

27 Repo: All Repositories (Full Control)

Save Reset

Figure 6.35: Managing Users

Clicking the Add button in the Role Management section will bring up the list of available roles in a pop-
up window visible in Figure 6.36. It allows you filter and search for roles and add one or multiple roles
to the user.

Repository Management with Nexus 157 / 440

*

Add Roles
Fitter: | Enter filter text... Selected Only Apply Fiter | Reset Fitter
] Mame = Description
|:| O] Atlas: Support Tools Gives access to Atlas support tools
[7]7] Beta Tester
|:| O] Compenent Aralyst for Security and License Issues
[77 Metrics Endpoints Allows access to metrics endpoints.
[] 01 Mexus Administrator Role Administration role for Maxus
[T 77 Mexus Ancnymous Role Anonymous role for Mexus
[] 01 Mexus API-Key Access APl-Key Access role for Maxus.
| =Y P PR S B [R DU B SU Y PR -

Page 1cf5] b Bl | & Displaying roles 1 - 25 of 114

OK ‘ Cancel J

Figure 6.36: Adding Roles to a User

A user can be assigned one or more roles that in turn can include references to other roles or to individual
privileges. To view a tree of assigned roles and privileges, select the Role Tree for a particular user as
shown in Figure 6.37.

Repository Management with Nexus

158 / 440

deployment

Config Privilege Trace Role Tree

“Z Refresh

= =5 Deployment User
= |__| Mexus Deployment Role
=l |__| Mexus Anonymous Role
H |__J Ul Archive Browser

|| Ul Repository Browser
& |_JUl: Search
5 Artifact Download

5 Repository Types - (read)
E Status - (read)

& |__J Ul Health Check (Summary)

User Token

E Repository Content Classes Component - (read)

Figure 6.37: User Role Tree

If you need to find out exactly how a particular user has been granted a particular privilege, you can use
the Privilege Trace panel as shown in Figure 6.38. The Privilege Trace panel lists all of the privileges
that have been granted to a particular user in the Privileges section. Clicking on a privilege loads a tree of
roles that grant that particular privilege to a user. If a user has been assigned a specific privilege by more
than one Role or Privilege assignment, you will be able to see this reflected in the Role Containment list.

Repository Management with Nexus 159 /440

deployment
Config Privilege Trace Role Tree User Token

2 Refresh

L .) List of roles in the user that grant the selected privilege.
Select a prwllegg t.D view the role(s) in the user Expand the role to find nested role{s) that contain
that grant the privilege. -
the privilege.

Privileges Role Containment
e rropTT—oo ,
=] Ml Repositories - (read)
=] Ml Repositories - (update)
=] Ml Repositories - (view)
=] Artifact Download
=] Browse Archive Files (read)
5 Browse Remote Repository - (read)

= |_J Ul Archive Browser
= |_| Nexus Anonymous Role
|__| Nexus Deployment Role

Figure 6.38: User Privilege Trace

Additional plugins can contribute further panels for the security configuration of a user. An example of an
additional panel is the User Token panel, added by the User Token feature of Nexus Repository Manager
as documented in Section 6.17.

6.17 Security Setup with User Tokens

Auvailable in Nexus Repository Manager only

6.17.1 Introduction

When using Apache Maven with Nexus Repository Manager or Nexus Repository Manager OSS, the user
credentials for accessing the repository manager have to be stored in clear text in the user’s settings.xml
file. Maven has the ability to encrypt passwords in setting.xml, but the need for it to be reversible in order
to be used, limits its security. In addition, the general setup and use is cumbersome, and the potential
need for regular changes due to strong security requirements e.g., with regular, required password changes
triggers the need for a simpler and more secure solution.

Other build systems use similar approaches and can benefit from the usage of User Token as well.

Repository Management with Nexus 160/ 440

The User Token feature of Nexus Repository Manager fills that need for Apache Maven as well as other
build systems and users. It introduces a two-part token for the user, replacing the username and password
with a user code and a pass code that allows no way of recovering the username and password from the
user code and pass code values; yet can be used for authentication with the repository manager from the
command line via Maven as well as in the UL

This is especially useful for scenarios where single sign-on solutions like LDAP are used for authentica-
tion against the repository manager and other systems and the plain text username and password cannot
be stored in the settings.xml following security policies. In this scenario the generated user tokens
can be used instead.

User token usage is integrated in the Maven settings template feature of Nexus Repository Manager
documented in Chapter 13 to further simplify its use.

6.17.2 Enabling and Resetting User Tokens

The user token-based authentication can be activated by an administrator or user with the role usertoken-
admin or usertoken-all by accessing the User Token item in the Security submenu on the left-hand main
menu.

Once user token is Enabled by activating the checkbox in the administration tab displayed in Figure 6.39
and pressing Save, the feature is activated and the additional section to Reset All User Tokens is available
as well.

Repository Management with Nexus 161 /440

User Token ¥
Settings
Enabled (?)

Protect Content (7]

Save | Discard

Reset

Reset will invalidate ALL existing user tokens and force
é new tokens to be created the next time accessed.

“.| Reset All User Tokens |

Figure 6.39: User Token Administration Tab Panel

Selecting the Protect Content feature configures the repository manager to require a user token for any
access to the content URLSs that includes all repositories and groups. This affects read access as well as
write access e.g., for deployments from a build execution or a manual upload.

Activating User Token as a feature automatically adds the User Token Realm as a Selected Realm in the
Security Settings section as displayed in Figure 6.40 and available in the Server section of the left-hand
Administration menu. If desired, you can reorder the security realms used, although the default settings
with the User Token Realm as a first realm is probably the desired setup. This realm is not removed when
the User Token feature is disabled; however, it will cleanly pass through to the next realm and with the
realm remaining any order changes stay persisted in case the feature is reactivated at a later stage.

Repository Management with Nexus 162 /440

| Security Settings

Selected Realms Available Realms
|==| User Token Realm E Enterprise LOAP Authentication Realm
5 Xml Authenticating Realm 5 NuGet APl-Key Realm
|=| Crowd Realm

=] Xmil Autherizing Realm
|=| Rut Auth Realm

EEEIE

Figure 6.40: Selected Realms Server Security Settings with User Token Realm activated

Besides resetting all user tokens, an administrator can reset the token of an individual user by selecting the
User Token tab in the Users administration from the Security menu in the left-hand navigation displayed
in Figure 6.41. The password requested for this action to proceed is the password for the currently logged
in administrator resetting the token(s).

Users X

% Refresh () Add... v @ Delete || All Configured Users +

User ID Realm First Name ~ Last Name

admin default Administrator

deployment default Deployment User

anonymous default Nexus Anonymous User

f a 4N
admin

Config User Token | Role Tree | Privilege Trace

Reset

Resetting a users token will invalidate the current token and force a new
token to be created the next time accessed by the user.

*." Reset User Token |

Figure 6.41: User Token Reset for Specific User in Security Users Administration

Repository Management with Nexus 163 /440

Warning

@ Resetting user tokens forces the users to update the settings.xml with the newly created
tokens and potentially breaks any command line builds using the tokens until this change is
carried out. This specifically also applies to continuous integration servers using user tokens or
any other automated build executions.

6.17.3 Accessing and Using Your User Tokens

With user token enabled, any user can access his/her individual tokens via their Profile panel. To access
the panel, select Profile when clicking on the user name in the top right-hand corner of the user interface.
Then select User Token in the drop-down to get access to the User Token screen in the Profile panel
displayed in Figure 6.42.

Profile %

User Token 7

User tokens provide an alternative mechansim to authenticate with
Nexus without use of passwords.

Access

A new user token will be created the first time it is accessed.

“.| Access User Token |

Reset

Resetting your user token will invalidate the current token and force a
new token to be created the next time accessed.

“. Reset User Token |

Figure 6.42: User Token Panel for the Logged in Users in the Profile Section

In order to be able to see this User Token panel the user has to have the usertoken-basic role or the
usertoken—user privilege. To access or reset the token you have to press the respective button in the
panel and then provide your username and password in the dialog.

Resetting the token will show and automatically hide a dialog with a success message and accessing the
token will show the dialog displayed in Figure 6.43.

Repository Management with Nexus 164 /440

User Token X

User tokens are a combination of a name and password codes.
Keep these codes secret!

Your user token is:
UgvV1tUe : apn2AkyaS50NvE100GLwILovAWSWRANEWWY ziDaLNE6M

Use the following in your Maven settings.xml:

<server>
<id>${server}</id>
<username>UgvV1tUc</username>
<password>apn2AkyaS50Nv6100GLwILovBWsWRBNEWWYziDaLNE6M< /password>
</server>

This window will automatically close after one minute.

Close

Figure 6.43: Accessing the User Token Information

The User Token dialog displays the user code and pass code tokens in separate fields in the top level
section as well as a server section ready to be used in a Maven settings.xml file. When using the server
section you simply have to replace the ${server} placeholder with the repository id that references
your repository manager you want to authenticate against with the user token. The dialog will close
automatically after one minute or can be closed with the Close button.

The user code and pass code values can be used as replacements for username and password in the login
dialog. It is also possible to use the original username and the pass code to log in to the user interface.

With content protection enabled, command line access to the repository manager will require the tokens
to be supplied. Access to e.g., the releases repository via

curl -v --user admin:admin http://localhost:9081/content/repositories/ ¢
releases/

has to be replaced with the usage of user code and pass code separated by colon in the curl command line
like this

curl -v —--user HdeHul4x:Y7ZH61ixZFdOVwNpRhaOV+phBISmipsfwVxPRUH1gkV09 http <=
://localhost:9081/content/repositories/releases/

User token values can be accessed as part of the Maven settings template feature automating updates as
documented in Chapter 13.

Repository Management with Nexus 165 /440

Note
The user tokens are created at first access whether that is by using the user interface or the Nexus
Maven Plugin.

6.17.4 Configuring User Token behavior

The user token feature is preconfigured with built-in parameters and no external configuration file is
created by default. It is however possible to customize some behavior by creating a file sonatype-
work/nexus/conf/usertoken.properties’.

The following properties can be configured:

usertoken.userTokenServiceImpl.allowLookupByUserName
This parameter controls if username lookup is allowed when using a pass code. The default is set
to true. If set to false, user code and pass code have to be used to authenticate, otherwise username
and pass code is also possible. This would be the more secure setting.

usertoken.userTokenServicelmpl.restrictByUserAgent
With this value set to true (the default), any access to the repository manager content with content
protection enabled will only be allowed to browser-based access even without credentials. Other
tools like curl or wget or other command-line tools will be blocked. With the more secure setting
of false, any access without correct codes will be disallowed.

The usertoken. prefix is optional when the properties are loaded from the usertoken.properties file.

6.18 Authentication via Remote User Token

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

Nexus Repository Manager and Nexus Repository Manager OSS allows integration with external security
systems that can pass along authentication of a user via the Remote_User HTTP header field - Remote
User Token Rut authentication. There are either web-based container or server-level authentication sys-
tems like Shibboleth. In many cases, this is achieved via a server like Apache HTTPD or nginx proxying
the repository manager. These servers can in turn defer to other authentication storage systems e.g., via

http://shibboleth.net/
http://httpd.apache.org/
http://nginx.org/

Repository Management with Nexus 166 / 440

the Kerberos network authentication protocol. These systems and setups can be described as Central
Authentication Systems CAS or Single Sign On SSO.

From the users perspective, he/she is required to login into the environment in a central login page that
then propagates the login status via HTTP headers. The repository manager simply receives the fact that
a specific user is logged in by receiving the username in a HTTP header field.

The HTTP header integration can be activated by adding and enabling the Rut Auth capability as doc-
umented in Section 6.6 and setting the HTTP Header name to the header populated by your security
system. Typically, this value is REMOTE_USER, but any arbitrary value can be set. An enabled capabil-
ity automatically causes the Rut Auth Realm to be added to the Selected Realms in the Security Settings
described in Section 6.1.3.

When an external system passes a value through the header, authentication will be granted and the value
will be used as the user name for configured authorization scheme. For example, on a default repository
manager installation with the Xml authorization scheme enabled, a value of deployment would grant the
user the access rights in the user interface as the deployment user.

A seamless integration can be set up for users if the external security system is exposed via LDAP and
configured in the repository manager as LDAP authorization realm combined with external role mappings
and in parallel the sign-on is integrated with the operating system sign-on for the user.

http://web.mit.edu/kerberos/

Repository Management with Nexus 167/ 440

Chapter 7

Smart Proxy

Available in Nexus Repository Manager only

7.1 Introduction

Default is Polling

Typically an organization runs a single Nexus Repository Manager instance to proxy external components
as well as host internally produced components. When a build is running against this instance, it will look
for any new components in the proxied remote repositories. This adds additional network traffic that in
many cases will just be a response from the remote server indicating that there are no changes.

This polling approach is fine for smaller deployments. It will not result in immediately updated compo-
nents as soon as they become available upstream. In distributed teams with multiple Nexus Repository
Manager instances, this delay can result in build failures and delays. The only way you are going to
achieve that everything is up to date is by setting expiration times to zero and constantly polling.

Smart Proxy Introduces Publish-Subscribe

Increasingly, Nexus Repository Manager is used in globally distributed teams or used by projects that
span multiple organizations. In many cases, it is advisable for each physical location to host its own

Repository Management with Nexus 168 / 440

Nexus Repository Manager instance. This local instance hosts its own components and proxies the other
servers.

An example deployment scenario is displayed in Figure 7.6. Using the traditional polling approach,
specifically when used with snapshot repositories, can result in significant traffic and a performance hit
for all involved servers.

The Smart Proxy feature replaces this constant polling approach with a Publish/Subscribe-based mes-
saging approach between repository manager instances sharing a mutual trust. Once a component is
published to a repository a message is sent to all subscribing in the smart proxy message queue that de-
tails the availability of new component. The subscribers are therefore immediately aware of any new
deployment and can provide these components without having to poll the publishing server.

The result is a significantly improved performance due to nearly immediate availability of upstream com-
ponent information directly in the downstream repository managerinstances.

7.2 Enabling Smart Proxy Publishing

In order to enable the smart proxy feature on your Nexus Repository Manager instance, you need to
navigate to the global Smart Proxy configuration screen. It is available in the left-hand navigation in the
Enterprise section. Selecting Smart Proxy will show you the configuration screen displayed in Figure 7.1.

Repository Management with Nexus 169 /440

Welcome Smart Proxy L
Metwork Settings

Enable Server:)

Address: 0.0.0.0
Part:)
Advertised URI:

Status

Listening for connections: ssl://Manfreds-MacBook-Pro.local:49665

Advertising to clients: ssl:f/Manfreds-MacBook-Pro.local: 49665

Save Cancel

Public Key

Certificate | === BEGIN CERTIFICATE----
MIIDICCANKgAWIBAQIGATYILVRNMAOGCSqGSIb3DQER
BQUAMIGEMSOwKwYDVQQD
DCRINGMSNDE4Z5040DQWLTQ4MIYEtOGEYMS1jNDQOM]
BhZDViMmIxDjAMBgMNVBASM
BUSleHVzMREWDwWYDVQOKDAhTb25hdHIWZTEWMBQGA
1UEBwwNUZ2IsdmWyIFNwcmlu
ZZELMAKGALUECAWCTUQXCZAIBGNVEAYTAIVTMCAXDTE
yMDMxM]IzMTAyN1oYDzIx
MTIwMjE3MjMxMDI3WICBhDEMCsGALUEAWWKZTRIOTQ

AP LA YR S PIT T e

Fingerprint 21:EB:68:31:CE:52:39:0C:14:7B:F1:CD:DD:A4:AB:02 :D7:6E:t

Trusted Certificates
2 Refresh () Add
Fingerprint Description -

21:EB:6B:31:CE... serverc
21:EB:68:31:CE... ServerB

Figure 7.1: Global Configuration for Smart Proxy

The Network Settings section allows you to enable the smart proxy server with a checkbox. This will need
to be enabled on all servers that publish events in the smart proxy network, while servers that act only as
subscribers can leave this option unchecked.

In addition, you can configure the address and port where the publishing server will be available. The
default address of 0.0.0.0 will cause the proxy to listen on all addresses. The default port number of 0 will
trigger usage of a random available port number for connection listening. If a random port is used, it will
be chosen when the server (re)starts.

With the Advertised URI field it is possible to configure a specific address to be broadcasted by the
proxy to the subscribing smart proxy clients enabling, e.g., usage of a publicly available fully qualified

Repository Management with Nexus 170/ 440

hostname, including the domain or also just the usage of an externally reachable IP number.

Important

It is important to configure the ports in the repository manager and any firewall between the
servers to allow the direct socket connection between the servers and to avoid using random
ports.

The Status field below the form will show the current status of the smart proxy including the full address
and port.

The Public Key field displays the key identifying this server instance. It is automatically populated with
the certificate associated with the public/private key pair that is generated when the server is first run.

Tip

The key is stored in sonatype-work/nexus/conf/keystore/private.ks and identifies
this server. If you copy the sonatype work folder from one server to another as part of a migration or a
move from testing to staging or production you will need to ensure that keys are not identical between
multiple servers. To get a new key generated, simply remove the keystore file and restart the repository
manager.

7.3 Establishing Trust

The servers publishing as well as subscribing to events identify themselves with their public key. This
key has to be registered with the other servers in the Trusted Certificates section of the Smart Proxy
configuration screen.

To configure two repository managers as trusted smart proxies, you copy the public key from the certificate
of the other server in the Trusted Certificates configuration section by adding a new trusted certificate with
a meaningful description as displayed in Figure 7.2 and Figure 7.3.

Repository Management with Nexus 171/ 440

| Smart Proxy | |
Public Key

Certificate ——BEGIN CERTIFICATE-
MIDIjC CANK:

TM2LTRINMQtYWI2ZS 0z T

Y MDEYNZEAMT QzNIoYDzix
M T IWIIT AZM T gxNDM2W/CBRDEtMC SGA 1 UEAWWKZDMxNMY
iNZUR WUZNIOOZ T ZkLWE

Fingerprint 70:34:89:42:6B:41.F7.72:E0:82:91:90:BB:79:30:3B:0C: 3C:EC.50

Trusted Certificates
“Refresh @ add Edit @Delate

Fingerprint Description =
A1:2D:5A:B8:D 081

Figure 7.2: Copying a Certificate

Add Trusted Certificate bd|

cGUxFJAUBgNVBACMDYNpBHZICIE I cHJpbmexCzAJBgMVBAgMAKTEMQswC QY DVQQG
EwJvUzCCASWDOYJKaZlIhveNAQEBBQADYYEPADCCAQOCYYEBAMOWIRpgae2ICKLE
Ood6cKZATFDVNICNOcjBRYF 79ERN Lnux0skvVUMGIEJBEgYDWInPidEbnwgzmgre
nbaJuxDasxToAPWAZWxioF cKrnjwOBGLIg2smQadlOdgiudRipg+ZyeNQOAIQZR
KLocSjKISZCMAgfGBIYITWHKK2OVVEZAUKMPgdIsd 1¥yYw3kk9e8nxnDZPCLD

Tzv8J TV 0pdHSSQYpBUIcZ03J020ENNeBdxSUTTY azr6tKMn238pVDWswGVISNTH 1
OhC7ronu3TeQHp9dps6oqqzRePl4Ow3k3CzvDwikmFhlSeEVmM+dEHUNPJOMThD 1
VKy9JIKCAWEAATANBgKghKIGIWOBAQUF AACQ CAQEAINGIDSILOMsOc+66NTVC42Rd
*E/D14q100UIGU0ggzvmnaPoQNWO29caWiEsBNHa e8jc 0oB/LXCY v 5t0l1tZ6x
2iHpgz4 10zKC3MA2JHDSEVRpBHIDG 10dPCo9QC oJJUBLUNUAJfgABLZqZgmnD)
WHDKoITmMNYGS4Ji94F d4KicP T6s3KDxcVIKUSXTBnre PWIKopgJOidCGTBacha
+sG+vmQZDzzbl1 3KRwTNyDsQIXp2X2EcF IkCLONOppWi1nxlO3THUJKUBCFgb85SQ
hrwrm'f1 SWAQOXWrePSMAGHrgqph7Vv80JkD2KkeELe 1 rNx02CchnAWK TULVBSWw==
77777 END CERTIFICATE-----

D
©

<14

=
T
=

o

Description ThirdPartyPublisher

| ok | | Cancel

|

Figure 7.3: Adding a Trusted Certificate

All of the key generation and certificates related to the trust management is handled by the repository
manager itself. No external configuration or usage of external keys is necessary.

Repository Management with Nexus 172/ 440

7.4 Repository Specific Smart Proxy Configuration

Once Smart Proxy has been configured and enabled as previously described, you have to configure which
repositories contents should be proxied more efficiently between the servers. This is done in the Repos-
itories administration interface in a separate configuration tab titled Smart Proxy, which allows you to
configure repository-specific details as compared to server wide details described above.

On the publishing repository manager you have to enable smart proxy on the desired hosted, virtual or
proxy repositories in the repository configuration. This is accomplished by selecting the Publish Updates
checkbox in the Publish section of the Smart Proxy configuration for a specific repository as displayed in
Figure 7.4 and pressing save.

Welcome Repositories £

% Refresh () Add..~ (@ Delete {5 Trash..» |~ User Managed Repositories~

Repository - Type Health Check Format Policy Repositg
MU IdIETY HIURY -] Tuyet (=1 B
NuGet Releases hosted :) nuget In Sen
Releases hosted :) mavenz Release In Sen
Snapshots hosted g) mavenz Snapshot In Sen
Snnatvna Srid [aTaa¥iN WA @ 1 maven? Relaacea In Semn
Snapshots

Browse Index Browse Storage Configuration Mirrors Rauting Smart Proxy | =

Publish

Publish Updates L

Figure 7.4: Smart Proxy Settings for a Hosted Repository

On the repository manager subscribing to the publishing server you have to create a new proxy repository
to expose the proxied components. The smart proxy configuration for this repository displayed in Fig-
ure 7.5 allows you to activate the Receive Updates checkbox in the Subscribe configuration section. With
a working trust established between the publishing and subscribing servers the Smart Proxy configuration
of the proxy repository on the subscribing repository manager will display connection status.

Repository Management with Nexus 173 /440

master-releases

4= vse Storage Configuration Health Check Routing Smart Proxy Sum| =
Publish

Publish Updates |

Subscribe

Receive Updates @I

Remote Fingerprint C3:1C:04:B4:38:7F:00:04:4C:32
Status

Connected to ssl;//Manfreds-MacBook-Pro.local:51827

Connected since: Tue Jul 29 12:56:47 PDT 2014

Figure 7.5: Smart Proxy Settings for a Proxy Repository

7.5 Smart Proxy Security and Messages

Smart Proxy messages are started with an initial handshake via HTTP or HTTPS. The protocol chosen is
determined by the URL defined in the proxy repository configuration in the Remote Storage Location. For
increased security we suggest to use HTTPS, even for internal repository URLs. This handshake allows
the two server to exchange their keys and confirm that they are configured with a valid trust relationship
to communicate. After a successful handshake, messages are sent in the middleware layer and are all sent
via SSL encrypted messages.

The following events are broadcasted via Smart Proxy.

* anew component has been deployed

* a component has been deleted

* a component has been changed

* repository cache or a part of it has been cleared

» Smart Proxy publishing has been disabled

Repository Management with Nexus 174/ 440

On the recipient side this will cause the changes to be applied, mimicking what happened on the publisher.
If Smart Proxy is disabled the subscription will be stopped.

7.6 Example Setup

The deployment scenario displayed in Figure 7.6 is a typical use case for Smart Proxy. Component
development is spread out across four distributed teams located in New York, London, Bangalore and San
Jose. Each of the teams has a repository manager instance deployed in their local network to provide the
best performance for each developer team and any locally running continuous integration server and other
integrations

Norus2 titeiet
— fifiiet
erteee

Proxy R1 De‘{:,}:f:”

fi o i
it — < i

FRRHT R 11

Proxy R1 Developers
Developers 2

= it
—
tittiit

Developers
San Jose

Master R1

Proxy R1

Figure 7.6: Deployment Scenario for a Smart Proxy Use Case

When the development team in New York does a commit to their component build, a continuous integra-
tion server deploys a new component snapshot version to the Nexus I instance.

With smart proxy enabled, this deployment is immediately followed by notifications, sent to the trusted
smart proxy subscribers in Nexus 2, Nexus 3, and Nexus 4. These are collocated with the developers
in London, Bangalore, and San Jose and can be configured to immediately fetch the new components
available. At a minimum they will know about the availability of new component versions without the
need to poll Nexus 1 repeatedly, therefore, keeping performance high for everyone.

When a user of Nexus 2, 3 or 4 build a component that depends on a snapshot version of the component

Repository Management with Nexus 175/ 440

from Nexus 1, smart proxy guarantees that the latest version published to Nexus I is used.

To configure smart proxy between these servers for the snapshots repository you have to

1. add the public key of Nexus I as trusted certificate to Nexus 2, 3 and 4

add the public keys of Nexus 2, 3 and 4 as trusted certificate to Nexus 1

enable smart proxy publishing on the snapshot repository on Nexus I

set up new proxy repositories to proxy the Nexus I snapshot repository on Nexus 2, 3 and 4
enable smart proxy subscription on the new proxy repositories

optionally enable prefetching of components

Nk we

add the new proxy repositories to the public group on Nexus 2, 3 and 4

With this setup, any snapshot deployment from the New York team on Nexus [is immediately available
to the development team in London, Bangalore, and San Jose.

7.7 Advanced Configuration

Typically smart proxy is configured in the dedicated user interfaces provided and described earlier in
this chapter. More fine grained and advanced configuration is exposed in the capabilities administration
documented in Section 6.6.

Specficically the following capabilities for the core smart proxy features are automatically created and
maintained.

Smart Proxy: Identity
Provides the unique identity for the repository manager.

Smart Proxy: Messaging
Provides the core messaging facilities for smart proxy.

Smart Proxy: Trust
Configures a trust relationsship with a remote node.

Smart Proxy: Secure Connector
Secures the connection using identity and trust.

Repository Management with Nexus 176/ 440

In addition you can find one smart proxy capability for each repository configured to be publish or sub-
scribe updates with Smart Proxy.

Smart Proxy: Publish
Configures publishing updates to a specific repository via smart proxy.

Smart Proxy: Subscribe
Configures subscribing to updates for a specific proxy repository. This capability exposes the ad-
ditional setting Delete in the Settings tab. If deletion is enabled, any component deletions in the
publishing repository is also carried out in the subscribing repositories. The Preemptive Fetch flag
allows you to enable a download of components to the susbscribing proxy repository prior to any
component requests received by it. The default behaviour with preemptive fetch disabled only
publishes the fact that new components are available from the publishing repository.

Tip
A series of videos demonstrating Smart Proxy is available on the Nexus community site.

http://www.sonatype.org/nexus/members-only/video-gallery-2/free-training-nexus-professional-and-smart-proxy/

Repository Management with Nexus 177/ 440

Chapter 8

LDAP Integration

Available in Nexus Repository Manager OSS and Nexus Repository Manager

8.1 Introduction

Nexus Repository Manager OSS has a Lightweight Directory Access Protocol (LDAP) Authentication
realm which provides the repository manager with the capability to authenticate users against an LDAP
server. In addition to handling authentication, the repository manager can be configured to map roles to
LDAP user groups. If a user is a member of a LDAP group that matches the ID of a role, the repository
manager grants that user the matching role. In addition to this highly configurable user and group map-
ping capability, the repository manager can augment LDAP group membership with specific user-role

mapping.

In addition to the basic LDAP support from Nexus Repository Manager OSS, Nexus Repository Man-
ager offers LDAP support features for enterprise LDAP deployments. These include the ability to cache
authentication information, support for multiple LDAP servers and backup mirrors, the ability to test
user logins, support for common user/group mapping templates, and the ability to support more than one
schema across multiple servers.

Repository Management with Nexus 178 /440

8.2 Enabling the LDAP Authentication Realm

In order to use LDAP authentication in the repository manager, you will need to add the Nexus LDAP
Authentication Realm to the Selected Realms in the Security section of the Server configuration panel.
To load the Server configuration panel, click on the Server link under Administration in the main menu.
Once you have the Server configuration panel loaded, select Enterprise LDAP Authentication Realm (or
OSS LDAP Authentication Realm) in the Available Realms list under the Security Settings section and
click the Add button (or Left Arrow) as shown in Figure 8.1 and ensure that the LDAP realm is located
below the XML realms in the list.

This is necessary, so that the repository manager can be used by anonymous, admin and other users
configured in the XML realms even with LDAP authentication offline or unavailable. Any user account
not found in the XML realms, will be passed through to LDAP authentication.

Next, click on the Save button at the bottom of the Server configuration panel to have the change applied.

- | Security Settings

Selected Realms Available Realms
=] User Token Realm =] Rut Auth Realm
=] ¥ml Authenticating Realm 4 =] Enterprise LOAP Authentication Realm
=] ¥ml Autherizing Realm I4 =] NuGet API-Key Realm
=] Crowd Realm

3.5 5 Enterprise LOAP Authentication Realm
L4 |

Figure 8.1: Adding the LDAP Authentication Realm to Available Realms

8.3 Configuring LDAP Integration

To configure LDAP integration, click on the Enterprise LDAP menu item in Nexus Repository Manager
or the LDAP Configuration menu item in Nexus Repository Manager OSS in the Security menu in the
left-hand main menu.

Clicking on the Enterprise LDAP/LDAP Configuration menu item will load the LDAP Configuration
panel. The following sections outline the configuration options available in the LDAP Configuration

Repository Management with Nexus 179/ 440

Panel.

8.4 Connection and Authentication

Figure 8.2 shows a simplified LDAP configuration for the repository manager configured to connect to an
LDAP server running on localhost port 10389 using the search base of ou=system. On a more standard
installation, you would likely not want to use Simple Authentication as it sends the password in clear text
over the network, and you would also use a search base that corresponds to your organization’s top-level
domain components such as dc=sonatype, dc=com.

Welcome LDAP Configuration *
« | Connection
Protocol Idap 2]
Hostname localhost 7]
Port 10389 @
Search Base ou=system k)
| Authentication
Authentication Method Simple Authentication L]
SASL Realm @
Username uid=admin,ou=system L2]
Password ssasesnresnrennne)
Check Authentication
Save Cancel

Figure 8.2: A Simple LDAP Connection and Authentication Setup

The following parameters can be configured in the Connection and Authentiation sections of the LDAP
Configuration panel.

Protocol

Repository Management with Nexus 180 /440

Valid values in this drop-down are 1dap and 1daps that correspond to the Lightweight Directory
Access Protocol and the Lightweight Directory Access Protocol over SSL.

Hostname
The hostname or IP address of the LDAP.

Port

The port on which the LDAP server is listening. Port 389 is the default port for the 1dap protocol,
and port 636 is the default port for the 1daps.

Search Base

The search base is the Distinguished Name (DN) to be appended to the LDAP query. The search
base usually corresponds to the domain name of an organization. For example, the search base on
the Sonatype LDAP server could be dc=sonatype, dc=comn.

Authentication Method

The repository manager provides four distinct authentication methods to be used when connecting
to the LDAP Server:

Simple Authentication
Simple authentication is not recommended for production deployments not using the secure
Idaps protocol as it sends a clear-text password over the network.

Anonymous Authentication

Used when the repository manager only needs read-only access to non protected entries and
attributes when binding to the LDAP.

Digest-MDS5
This is an improvement on the CRAM-MDS5 authentication method. For more information,
see http://www.ietf.org/rfc/rfc2831.txt.

CRAM-MD5
The Challenge-Response Authentication Method (CRAM) is based on the HMAC-MD5 MAC
algorithm. In this authentication method, the server sends a challenge string to the client. The

client responds with a username followed by a Hex digest that the server compares to an
expected value. For more information, see RFC 2195.

For a full discussion of LDAP authentication approaches, see http://www.ietf.org/rfc/rfc2829.txt and
http://www.ietf.org/rfc/rfc2251.txt.

SASL Realm
The Simple Authentication and Security Layer (SASL) realm used to connect. It is only available
if the authentication method is Digest-MD5 or CRAM-MDS.

Username

Username of an LDAP user with which to connect (or bind). This is a Distinguished Name of a
user who has read access to all users and groups.

http://www.ietf.org/rfc/rfc2831.txt
http://www.ietf.org/rfc/rfc2829.txt
http://www.ietf.org/rfc/rfc2251.txt

Repository Management with Nexus 181 /440

Password
Password for an administrative LDAP user.

8.5 User and Group Mapping

The LDAP Configuration panel in Nexus Repository Manager OSS contains sections to manage User
Element Mapping and Group Element Mapping in the User and Group Settings tab. These configuration
sections are located in a separate panel called User and Group Settings in Nexus Repository Manager.
This panel provided a User & Group Templates drop-down displayed in Figure 8.3 that will adjust the
rest of the user interface based on your template selection.

Connection Backup Mirror User & Group Settings

| User & Group Templates

Template: Active Directory M|
Active Directory
| User Element Mapping Generic Ldap Server
Base DN: Posix with Dynamic Groups @
Posix with Static Groups
Lser Subtree: T

Figure 8.3: User and Group Templates Selection Drop Down

The User Element Mapping displayed in Figure 8.4 has been prepopulated by the Active Directory se-
lection in the template drop-down and needs to be configured as required by your LDAP server. The
available fields are:

Base DN
Corresponds to the Base DN containing user entries. This DN is going to be relative to the Search
Base, specified in Figure 8.2. For example, if your users are all contained in ou=users, dc=
sonatype, dc=com and you specified a Search Base of dc=sonatype, dc=com, you would
use a value of ou=users.

User Subtree
Values are True if there is a tree below the Base DN that can contain user entries and False if
all users are contain within the specified Base DN. For example, if all users are in ou=users
, dc=sonatype, dc=com this field should be False. If users can appear in organizational units
within organizational units such as ou=development, ou=users, dc=sonatype, dc=com,
this field should be True.

Repository Management with Nexus 182 /440

Object Class
This value defaults to inetOrgPerson which is a standard object class defined in RFC 2798. This
Object Class (inetOrgPerson) contains standard fields such as mail, uid. Other possible values are
posixAccount or a custom class.

User ID Attribute
This is the attribute of the Object class that supplies the User ID. The repository manager uses this
attribute as the User ID.

Real Name Attribute
This is the attribute of the Object class that supplies the real name of the user. The repository
manager uses this attribute when it needs to display the real name of a user.

E-Mail Attribute
This is the attribute of the Object class that supplies the email address of the user. The repository
manager uses this attribute when it needs to send an email to a user.

Password Attribute
This control is only available in Nexus Repository Manager OSS and replaced by the Use Password
Attribute section from [?informalfigure] in Nexus Repository Manager. It can be used to configure
the Object class, which supplies the password ("userPassword").

| User Element Mapping

Base DN: Cn=users o
User Subtree: 0@

Object Class: user o
User Filter: Lt
User ID Attribute: sAMAccountMame o
Real Name Attribute: cn Lo
E-Mail Attribute: mail o

Figure 8.4: User Element Mapping

Once the checkbox for Use Password Attribute has been selected, the interface from [?informalfigure]
allows you to configure the optional attribute. When not configured authentication will occur as a bind to
the LDAP server. Otherwise this is the attribute of the Object class that supplies the password of the user.
The repository manager uses this attribute when it is authenticating a user against an LDAP server.

http://www.faqs.org/rfcs/rfc2798.html

Repository Management with Nexus 183 /440

[Use Password Attribute

Password Attribute: (2]

The Group Type drop-down displayed in Figure 8.5 and Figure 8.6 determines which fields are available
in the user interface. Groups are generally one of two types in LDAP systems - static or dynamic. A static
group contains a list of users. A dynamic group is a list of groups to which user belongs. In LDAP a
static group would be captured in an entry with an Object class groupOfUniqueNames that contains one
or more uniqueMember attributes. In a dynamic group configuration, each user entry in LDAP contains
an attribute that lists group membership.

[Group Element Mapping
Group Type: Dynamic Groups ~ @
Member of Attribute: memberOF L]

Figure 8.5: Dynamic Group Element Mapping

Dynamic groups are configured via the Member of Attribute parameter. the repository manager inspects
this attribute of the user entry to get a list of groups of which the user is a member. In this configuration,
a user entry would have an attribute that would contain the name of a group, such as memberOf.

[Group Element Mapping

Group Type: Static Groups | e
Base DN: L2
Group Subtree: O e

Object Class: L2
Group ID Attribute: .2
Group Member Attribute: L2
Group Member Format: L2

Check User Mapping | | Check Login Sawve Cancel

Figure 8.6: Static Group Element Mapping

Repository Management with Nexus 184 /440

Static groups are configured with the following parameters:

Base DN
This field is similar to the Base DN field described for User Element Mapping. If your groups
were defined under ou=groups, dc=sonatype, dc=com, this field would have a value of ou=
groups.

Group Subtree
This field is similar to the User Subtree field described for User Element Mapping. If all groups are
defined under the entry defined in Base DN, this field should be false. If a group can be defined in
a tree of organizational units under the Base DN, then the field should be true.

Object Class
This value defaults to groupOfUniqueNames which is a standard object class defined in RFC 4519.
This default (groupOfUniqueNames) is simply a collection of references to unique entries in an
LDAP directory and can be used to associate user entries with a group. Other possible values are
posixGroup or a custom class.

Group ID Attribute
Specifies the attribute of the Object class that specifies the Group ID. If the value of this field
corresponds to the ID of a role, members of this group will have the corresponding privileges.
Defaults to cn.

Group Member Attribute
Specifies the attribute of the Object class which specifies a member of a group. A groupOfUnique-
Names has multiple uniqgueMember attributes for each member of a group. Defaults to uniqueMem-
ber.

Group Member Format
This field captures the format of the Group Member Attribute, and is used by the repository manager
to extract a username from this attribute. For example, if the Group Member Attribute has the format
uid=brian, ou=users, dc=sonatype, dc=comn, then the Group Member Format would be
uid=S$Susername, ou=users, dc=sonatype, dc=com. If the Group Member Attribute had
the format brian, then the Group Member Format would be $username.

If your installation does not use Static Groups, you can configure LDAP Integration to refer to an attribute
on the User entry to derive group membership. To do this, select Dynamic Groups in the Group Type field
in Group Element Mapping.

Once you have configured the User & Group Settings you can check the correctness of your user mapping
by pressing the Check User Mapping button visible in Figure 8.6.

Nexus Repository Manager offers a button Check Login to check an individual users login and can be
used as documented in Section 8.11.5.

http://www.faqs.org/rfcs/rfc2798.html

Repository Management with Nexus

Press the Save button after successful configuration.

8.6 Mapping Users and Groups with Active Directory

When mapping users and groups to an Active Directory installation, try the common configuration values
listed in Table 8.2 and Table 8.3.

Table 8.1: Connection and Authentication Configuration for Active Di-

rectory
Configuration Element Configuration Value
Protocol Idap
Hostname Hostname of Active Directory Server
Port 389 (or port of AD server)
Search Base DC=yourcompany,DC=com (customize for your organization)
Authentication Simple Authentication
Username CN=Administrator,CN=Users,DC=yourcompany,DC=com

Table 8.2: User Element Mapping Configuration for Active Directory

Configuration Element

Configuration Value

Base DN cn=users

User Subtree false

Object Class user

User ID Attribute sAMAccountName
Real Name Attribute cn

E-Mail Attribute mail

Password Attribute (Not Used)

Table 8.3: Group Element Mapping Configuration for Active Directory

Configuration Element

Configuration Value

Group Type

Dynamic Groups

185/ 440

Repository Management with Nexus

Table 8.3: (continued)

Configuration Element

Configuration Value

Member Of Attribute

memberOf

Warning

® You should connect to the Active Directory through port 3268 if you have a multi domain, dis-
tributed Active Directory forest. Connecting directly to port 389 might lead to errors. Port 3268
exposes Global Catalog Server that exposes the distributed data. The SSL equivalent connec-
tion port is 3269.

8.7 Mapping Users and Groups with posixAccount

When mapping users and groups to LDAP entries of type posixAccount, try the common configuration
values listed in Table 8.4 and Table 8.5.

Table 8.4: User Element Mapping Configuration for posixAccount

Configuration Element

Configuration Value

Base DN (Not Standard)
User Subtree false

Object Class posixAccount

User ID Attribute sAMAccountName
Real Name Attribute uid

E-Mail Attribute mail

Password Attribute (Not Used)

Table 8.5: Group Element Mapping Configuration for posixGroup

Configuration Element

Configuration Value

Group Type

Static Groups

Repository Management with Nexus

187/ 440

Table 8.5: (continued)

Configuration Element

Configuration Value

Base DN (Not Standard)
Group Subtree false

Object Class posixGroup
Group ID Attribute cn

Group Member Attribute memberUid

Group Member Format

8.8 Mapping Roles to LDAP Users

Once User and Group Mapping has been configured, you can start verifying how LDAP users and groups
are mapped to roles. If a user is a member of an LDAP group that has a Group ID corresponding to
the ID of a role, that user is granted the appropriate permissions in the repository manager. For exam-
ple, if the LDAP user entry in uid=brian, ou=users, dc=sonatype, dc=com is a member of a
groupOfUniqueNames attribute value of admin, when this user logs into the repository manager, he/she
will be granted the administrator role if the Group Element Mapping is configured properly. To verify
the User Element Mapping and Group Element Mapping, click on Check User Mapping in the LDAP
Configuration panel directly below the Group Element Mapping section, Figure 8.7 shows the results of

this check.

Repository Management with Nexus 188 /440

Welcome LDAP Configuration '*

Check Authentication

a | User Element Mapping

Base DN ou=users 2]

User Subtree 0@

Object Class inetOrgPerson L2 "
User ID Attribute uid 2]

Real Name Attribute cn 2]

E-Mail Attribute mail 2]

Password Attribute userpassword 2]

Password Encoding Crypt ¥ (2] "

M Group Element Mapping
Group Type Static Groups ¥ (2]
Base DN ou=groups (2]

Save Cancel

<=

User Mapping Test Results
User 1D . MNarme Email Roles

brian brian briani@example.com admin

Figure 8.7: Checking the User and Group Mapping in LDAP Configuration

In Figure 8.7, LDAP Integration locates a user with a User ID of "brian" who is a member of the "admin"
group. When brian logs in, he will have all of the rights that the admin role has.

8.9 Mapping Internal Roles for External Users

If you are unable to map all of the roles to LDAP groups, you can always augment the role information by
adding a specific user-role mapping for an external LDAP user in the repository manager. In other words,
if you need to make sure that a specific user in LDAP gets a specific role and you don’t want to model
this as a group membership, you can add a role mapping for an external user in the repository manager.

Repository Management with Nexus 189 /440

The repository manager keeps track of this association independent of your LDAP server. It continues to
delegate authentication to the LDAP server for this user. The repository manager will continue to map
the user to roles based on the group element mapping you have configured, but it will also add any roles
specified in the User panel. You are augmenting the role information that the repository manager gathers
from the group element mapping.

Once the user and group mapping has been configured, click on the Users link under Security in the main
menu. The Users tab is going to contain all of the configured users for this repository manager instance
as shown in Figure 8.8. A configured user is a user in a repository manager realm or an External User
that has an explicit mapping to a role. In Figure 8.8, you can see the three default users in the default

realm plus the brian user from LDAP. The brian user appears because this user has been mapped to
an internal role.

Welcome Users %
“Z Refresh @ Add... v & Delete || All Configured Users =
User ID Realm MName = Email Roles
admin default Administrator changeme@ycurcompany.com MNexus Administrator Rol
brian LOAP Brian Fox MNexus Deployment Role
deployment default Deployment User changemel@yourcompany.com Repo: All Repositories (f
Anonymous default Nexus Anonynmous User changeme2@yourcompany.com Nexus Anonymous Role
Deployment User
User ID =
Mame Deployment User 2]
Email changemel@yourcompary.com 2]
Status Active .7
Selected Roles Available Roles "
=] Nexus Deployment Role =] Mexus Administrator Role M v
Save I Reset

Figure 8.8: Viewing All Configured Users

The list of users in Figure 8.8 is a combination of all of the users in the default realm and all of the
External Users with role mappings. To explore these two sets of users, click on the All Configured Users
drop-down and choose Default Realm Users. Once you select this, click in the search field and press
Enter. Searching with a blank string in the Users panel will return all of the users of the selected type. In
Figure 8.9 you see a dialog containing all three default users from the default realm.

Repository Management with Nexus 190/ 440

Welcome Users %1 LDAP Configuration
“Z Refresh (&) Add... & Delete [Default Realm Users » || x
User ID Realm Name = Roles
admin default Administrator MNexus Administrator Rele
deployment default Deployment User Repo: All Repositories (Full Control), Mexus Deployn
ancnymous default Nexus Anonynmous User Nexus Anonymous Role, Repo: All Repositories (Re:

Figure 8.9: All Default Realm Users

If you wanted to see a list of all LDAP users, select LDAP from the All Configured Users drop-down shown
in Figure 8.8 and click on the search button (magnifying glass) with an empty search field. Clicking search
with an empty search field will return all of the LDAP users as shown in Figure 8.10.

Note
Note that the user tobrien does not show up in the All Configured Users list. This is by design. The

repository manager is only going to show you information about users with external role mappings. If
an organization has an LDAP directory with thousands of developers, the repository manager doesn’t
need to retain any configuration information for users that don’t have custom role mappings.

Welocome: Users | LDAP Configuration

% Refresh @ Add... ~ @& Delete [LDAP ~

User ID Realm Name = Raoles
brian LOAP Brian Fox admin, Nexus Deployment Role
tobrien LDAP Tim O'Brien admin

Figure 8.10: All LDAP Users

To add a mapping for an external LDAP user, you would click on the All Configured Users drop-down and
select LDAP. Once you’ve selected LDAP, type in the user ID you are searching for and click the search
button (magnifying glass icon to right of the search field). In Figure 8.11, a search for "brian" yields one
user from the LDAP server.

Repository Management with Nexus 191 /440

Welcome Users %1 LDAP Configuration
“Z Refresh & Add... ~ @ Delete |7 LDAP + | brian o
User ID Realm Name « All Users

brian LDAP Brian Fo Mapped External Users

® LDAP &
Default Realm Users

i All Configured Users
Brian Fox

User ID
Realm
Name

Email

Figure 8.11: Search LDAP Users

To add a role mapping for the external user brian shown in Figure 8.11, click on the user in the results
table and drag a role from Available Roles to Selected Roles as shown in Figure 8.12. In this case, the user
"brian" is mapped to the Administrative group by virtue of his membership in an "admin" group in the
LDAP server. In this use case, an administrator would like to grant Brian the Deployment Role without
having to create a LDAP group for this role and modifying his group memberships in LDAP

Repository Management with Nexus 192 /440

Welcome Users % LDAP Configuration
%, Refresh (@) Add... ~ & Delete [LDAP ~ | brian Jo)
User ID Realm Name = Rales
brian LDAP Brian Fox admin
Brian Fox
User ID
Realm
Mame
Email
Selected Roles Available Roles
=| Nexus Administrator Role =| Mexus Anonymous Role
5 Mexus Deployment Role =| Nexus Developer Role
5 Repo: All Repositories (Full Control]
=] Repo: All Repositories (Read)
4 =| Staging: Deployer
M =| Ul: Baze Ul Privileges
=| Ul: Group Administration
b =] Ul: LDAP Administratar
3
bl | =] Ul Licensing
Save J@J Reset |
11

Figure 8.12: Mapping the Deployment Role to an External User

The end result of this operation is to augment the Group-Role mapping that is provided by the LDAP
integration. You can use LDAP groups to manage coarse-grained permissions to grant people administra-
tive privileges and developer roles, and if you need to perform more targeted privilege assignments in the
repository manager you can Map LDAP users to roles with the techniques shown in this section.

8.10 Mapping External Roles to Repository Manager Roles

Nexus Repository Manager OSS and Nexus Repository Manager make it very straightforward to map an
external role to an internal role. This is something you would do, if you want to grant every member of
an externally managed group (such as an LDAP group) a certain privilege in the repository manager. For
example, assume that you have a group in LDAP named svn and you want to make sure that everyone in

Repository Management with Nexus 193 /440

the svn group has administrative privileges. To do this, you would click on the Add.. drop-down in the
Roles panel as shown in Figure 8.13. This drop-down can be found in the roles management panel which
is opened by clicking on Roles in the Security menu.

Welcome Roles *
Roles
3, Refresh | () Add...~ | @) Delete

Name . Nexus Role ping User M|
Nexus Adm External Role Mappingl@ false
Nexus Admins (From LDAP) Lo true
MNexus Ancnymous Role false
Nexus Deployment Role false
MNexus Deployment Role (Customized) true
Nexus Developer Role false
Role Configuration

Figure 8.13: Selecting External Role Mapping in the Role Management Panel

Selecting External Role Mapping under Add. .. will show you a dialog containing a drop-down of Exter-
nal Realms. Selecting an external realm such as LDAP will then bring up a list of roles managed by that
external realm. The dialog shown in Figure 8.14 shows the external realm LDAP selected and the role
"svn" being selected to map to a role.

Repository Management with Nexus 194 /440

Map External Role x[[m

ig tm

Realm LDAP g &

| Role » (]

| squid = |
sshd
5N

svn-labs @

SYs -
thy =
users

ileges utmp

tor Rola uucp |

vesa
webalizer

wheel) |
xfs v|

Figure 8.14: Selecting an Externally Managed Role to Map to an Internal Role

Once the external role has been selected, the repository manager creates a corresponding role. You can
then assign other roles to this new externally mapped role. Figure 8.15 shows that the SVN role from
LDAP is being assigned the Administrator Role. This means that any user that is authenticated against
the external LDAP Realm who is a member of the svn LDAP group will be assigned a role that maps to
the Administrator Role.

Repository Management with Nexus

195/ 440

8.11

Welcome Roles *

Roles
2 Refresh (@ Add...v (@ Delete

Mame . Mapping User Managed Session Timecut ~ Description
Staging: Nexus Plugins Admin true 60 Give all acce. ..
SVN Role (From LDAP) LOAP true 60
test true 2
Ul: Base Ul Privileges false 80
Ul: Group Administration false 60
Ul: LDAP Administrator false 80
Role Configuration
Name SWN Role (From LDAP) L2
Description External mapping for svn (LDAP) (=]
Session Timeout 60 (2]
Selected Roles [Privileges Available Roles / Privileges
|| Mexus Administrator Role || Mexus Admins (From LDAF) m

|__] Nexus Ancnymous Role

|__|Mexus Deployment Role

|__| Nexus Deployment Role (Customize
|| Nexus Developer Role

|__|Mexus Plugins Deployer

|__| Repo: All Repositories (Full Control)
|__| Repo: All Repositories (Read)

|__| Repo: Public Groups (Read)

S

.l
=

Save J Cancel

External ma...

Generic privi...
Gives acces.

Gives acces...

bl

[»q

e q

Figure 8.15: Mapping an External Role to an Internal Role

Enterprise LDAP Support

Auvailable in Nexus Repository Manager only

Repository Management with Nexus 196 / 440

8.11.1 Enterprise LDAP Fail-over Support

When an LDAP server fails, the applications authenticating against it can also become unavailable. Be-
cause a central LDAP server is such a critical resource, many large software enterprises will install a series
of primary and secondary LDAP servers to make sure that the organization can continue to operate in the
case of an unforeseen failure. Nexus Repository Manager’s Enterprise LDAP plugin now provides you
with the ability to define multiple LDAP servers for authentication. To configure multiple LDAP servers,
click on Enterprise LDAP under Security in the main application menu. You should see the Enterprise
LDAP panel shown in the following figure.

Welcome {_hfﬂ Enterprise LDAP =

_.2, Refresh (&3 Add @ Delete A Move Up ¥ Move Down _J) Save Order ﬁ Clear Cache

Mame » URL
Primary LDAP Server ldap:fiprimary-ldap.example.com:389/dc=example,dc=com
Secondary LDAP Server ldap:/iseconary-ldap.example.com: 388/dc=example,dc=com

Connection Backup Mirror User & Group Settings

MName:; Primary LDAP Server
L=
Protocol: Idap ™ | e
Hostname: primary-ldap.example.com
L=
Port: 389
L=
Search Base; de=example dc=com

o

= | Authentication

Authentication Method: Anonymous Authentication w0

| 4 s RS

Check Authentication Save Cancel

Figure 8.16: Defining Multiple LDAP Servers in Nexus Repository Manager

You can use the Backup Mirror setting for an LDAP repository. This backup mirror is another LDAP
server that will be consulted if the original LDAP server cannot be reached. Nexus Repository Manager

Repository Management with Nexus 197 / 440

assumes that the backup mirror is a carbon copy of the original LDAP server, and it will use the same user
and group mapping configuration as the original LDAP server. Instead of using the backup mirror settings,
you could also define multiple LDAP backup mirrors in the list of configured LDAP servers shown in the
previous figure. When you configure more than one LDAP server, Nexus Repository Manager will consult
the servers in the order they are listed in this panel. If the repository manager can’t authenticate against
the first LDAP server, Nexus Repository Manager will move on to the next LDAP server until it either
reaches the end of the list or finds an LDAP server to authenticate against.

Mexus
Pro

Figure 8.17: Use Multiple LDAP Servers in a Fail-over Scenario

The feature just described is one way to increase the reliability of your repository manager. In the previous
case, both servers would have the same user and group information. The secondary would be a mirror of
the primary. But, what if you wanted to connect to two LDAP servers that contained different data?

If you want to connect to two LDAP servers that contain different data, Nexus Repository Manager also
provides support for multiple servers and LDAP schemas as described in Section 8.11.2.

8.11.2 Support for Multiple Servers and LDAP Schemas

The same ability to list more than one LDAP server also allows you to support multiple LDAP servers
that may or may not contain the same user authentication information. Assume that you had an LDAP
server for the larger organization containing all of the user information across all of the departments.
Now assume that your own department maintains a separate LDAP server that you use to supplement this
larger LDAP installation. Maybe your department needs to create new users that are not a part of the

Repository Management with Nexus 198 /440

larger organization, or maybe you have to support the integration of two separate LDAP servers that use
different schema on each server.

A third possibility is that you need to support authentication against different schema within the same
LDAP server. This is a common scenario for companies that have merged and whose infrastructures have
not yet been merged. To support multiple servers with different user/group mappings or to support a single
server with multiple user/group mappings, you can configure these servers in the Enterprise LDAP panel
shown above. The repository manager will iterate through each LDAP server until it can successfully
authenticate a user against an LDAP server.

Multiple LDAP Servers One LDAP Server
Multiple User/Group Mappings Multiple User/Group Mappings
Company
LDAP
o Server

Department Company
Nexus [~ © LDAP Nexus LDAP

2 -
Pro \ Server ‘\‘ Server
9 External 9

LDAP
Server

)

Figure 8.18: Supporting Multiple LDAP Schemas with Nexus Repository Manager

8.11.3 Enterprise LDAP Performance Caching and Timeout

If you are constantly authenticating against a large LDAP server, you may start to notice a significant
performance degradation. With Nexus Repository Manager you can cache authentication information
from LDAP. To configure caching, create a new server in the Enterprise LDAP panel, and scroll to the
bottom of the Connect tab. You should see the following input field which contains the number of seconds
to cache the results of LDAP queries.

™ cache

Cache Duration: 600 |&

Figure 8.19: Setting the LDAP Query Cache Duration (in Seconds)

Repository Management with Nexus 199 /440

You will also see options to alter the connection timeout and retry interval for an LDAP server. If you are
configuring a number of different LDAP servers with different user and group mappings, you will want
to make sure that you’ve configured low timeouts for LDAP servers at the beginning of your Enterprise
LDAP server list. If you do this properly, it will take the repository manager next to no time to iterate
through the list of configured LDAP servers.

| Timeouts

Connection Timeout: 30

€

Retry Delay: 300

E4

Figure 8.20: Setting the LDAP Connection Timeout (in Seconds)

We improved the overall caching in this release. The cache duration is configurable and applies to authen-
tication and authorization, which translates into pure speed! Once you’ve configured LDAP caching in
Nexus Repository Manager, authentication and other operations that involve permissions and credentials
once retrieved from an external server will run in no time.

8.11.4 User and Group Templates

If you are configuring your Nexus Repository Manager instance to connect to an LDAP server there is a
very good chance that your server follows one of several, well-established standards. Nexus Repository
Manager’s LDAP server configuration includes these widely used user and group mapping templates that
great simplify the setup and configuration of a new LDAP server. To configure user and group mapping
using a template, select a LDAP server from the Enterprise LDAP panel, and choose the User and Group
Settings. You will see a User & Group Templates section as shown in the following figure.

| User & Group Templates
Template: Posix with Dynamic Gmups{ M| e
Active Directory
«| User Element Mapping Generic Ldap Server
Base DN: Posix with Dynamic Groups @
User Subtree: .E??E-With Static Groups

Figure 8.21: Using User and Group Mapping Templates

Repository Management with Nexus 200/ 440

8.11.5 Testing a User Login

Nexus Repository Manager provides you with the ability to test a user login directly. To test a user login,
go to the User and Group Settings tab for a server listed in the Enterprise LDAP panel. Scroll to the
bottom of the form, and you should see a button named "Check Login".

mail

Check User Mapping | | Check Logi%ijg Save Cancel

Figure 8.22: Testing a User Login

If you click on Check Login, you will then be presented with the login credentials dialog shown below.
You can use this dialog to login as an LDAP user and test the user and group mapping configuration for
a particular server. This feature allows you to test user and group mapping configuration directly and
to quickly diagnose and address difficult authentication and access control issues via the administrative
interface.

Login Credentials X
ection
Enter credentials to test against the LDAP server.
JUser
Username: tobrien 127
plate
Passwaord: sEAEBEREEE L]
|User Test {y Cancel
11
e DN Q=OECE

Figure 8.23: Supply a User’s Login Credentials

Repository Management with Nexus 201 /440

Chapter 9

Atlassian Crowd Support

Available in Nexus Repository Manager only

Atlassian Crowd is a single sign-on and identity management product that many organizations use to
consolidate user accounts and control which users and groups have access to which applications. Nexus
Repository Manager contains a security realm that allows you to configure the repository manager to
authenticate against an Atlassian Crowd instance.

The following steps are necessary to configure Crowd-based authentication:

1. Prepare Nexus

2. Prepare Atlassian Crowd

3. Configure the Nexus Crowd Connection
4. Configure Nexus Crowd Security

5. Activate the Nexus Crowd Realm

Note
Atlassian Crowd support is a Nexus Repository Manager feature.

http://www.atlassian.com/software/crowd/

Repository Management with Nexus 202/ 440

9.1 Prepare Nexus for Atlassian Crowd

Atlassian Crowd support is preinstalled and ready to configure in Nexus Repository Manager 2.7+.

In older versions, Crowd support is implemented as an optional plugin that comes as part of any Nexus
Repository Manager download. The directory containing the plugin code is called either enterprise-
crowd-plugin-X.Y.Z or nexus-crowd-plugin-X.Y.Z. Install the plugin following the instructions in Sec-
tion 22.1.

Warning

® Using LDAP and Crowd Realms together in the repository manager may work, but this is
not supported. If you already use LDAP support, we recommend adding your LDAP server as
a Crowd directory accessible to the Crowd nexus application instead of using both LDAP and
Crowd realms in the repository manager.

9.2 Prepare Atlassian Crowd

9.2.1 Compatibility

Always use the latest version of Crowd available at the time your version of Nexus Repository Manager
was released. When upgrading to a newer Crowd server, carefully review the Crowd server release notes
for REST API backwards compatibility issues.

Crowd support in Nexus Repository Manager 2.7 and greater only works in Crowd versions (2.1+) that
support the Crowd REST API. Older versions use a deprecated SOAP-based API and are less reliable and
performant.

Crowd support is actively tested with the highest available version of Crowd at the time Nexus Repository
Manager is released.

Repository Management with Nexus 203 /440

9.2.2 Configure a Nexus Repository Manager Application in the Atlassian Crowd
Server

Note
These instructions are a general guide to adding an application to Crowd. For current detailed instruc-
tions, visit the official Crowd documentation.

To connect Nexus Repository Manager to Atlassian’s Crowd, you will need to configure Nexus Repository
Manager as an application in Crowd.

1. Login to Crowd as a user with administrative rights.
2. Click on the Applications tab.

3. Click Add Application to display the form shown in Figure 9.1, and create a new application with
the following values in the Details tab of the Add Application form:

* Application Type: Generic Application
* Name: nexus
» Description: Nexus Repository Manager

4. Choose a password for this application. Nexus will use this password to authenticate with the
Crowd server. Click on the Next button.

https://confluence.atlassian.com/display/CROWD/Adding+an+Application

Repository Management with Nexus

204 /440

Add Application

1. Details

Application Type: * | Generic Application F

Name: © nexus

Description: Sonatype Nexus Professional

Password: L P —

Confirm Password: T eremerennes

Are you connecting JIRA to Crowd, or perhaps Confluence or Bamboo?

A short description of the application. Often a URL is helpful.

Figure 9.1: Creating a Nexus Crowd Application

Clicking on Next will advance the form to the Connection tab shown in Figure 9.2. In this tab you need
to supply the URL of your application instance and the remote IP address for Nexus Repository Manager.
Figure 9.2, shows the Connection form configured for a local instance of Nexus Repository Manager. If
you were configuring Crowd and Nexus Repository Manager in a production environment, you would
supply the URL that users would use to load the repository manager user interface in a web browser and
you would supply the IP address that the repository manager will be connecting from. Once you have
completed the Connection form, click on Next to advance to the Directories form shown in Figure 9.3.

Add Application - nexus

1. Detalls 2. Connection

The URL where this application resides, e.g. hitp:/ijira.atlassian.com

Remote IP Address: : [12?.0.0.1| i
The IP address for the application, e.g. 127.0.0.1
{ Nexts»)(Cancel)

URL: " httpiflocalhost:8081/nexus Resolve IP Address

Figure 9.2: Creating a Nexus Crowd Application Connection

Repository Management with Nexus 205 /440

The Directories form allows you to select the user directory used for Nexus authentication. In this exam-
ple, the default User Management directory will be used.

Add Application - nexus

1. Detalls 2. Connection 3. Directories

elect the directories you are going to let this application use for authentication and authorisation.

User Management: |
Crowd Intermnial Directory = This is a user management directory

{ Nexts)(Cancel)

Figure 9.3: Choosing Atlassian Crowd Application Directories

Clicking on the Next button in the Directories form advances to the Authorisation form shown in Fig-
ure 9.4. If any of the directories selected in the previous form contain groups, each group is displayed
on this form next to a checkbox. You can select Allow all users for a directory or you can select specific
groups that are allowed to authenticate to Nexus Repository Manager via Crowd. This option would be
used if you wanted to limit repository manager access to specific subgroups within a larger Crowd direc-
tory. If your entire organization is stored in a single Crowd directory, you may want to limit repository
manager access to a group that contains only developers and administrators.

Add Application - nexus

1. Detalls 2. Connectlon 3. Directories 4. Authorisation

from a given directory to the ‘nexus’ application, or choose the specific groups from each directory.

Directory — User Management

Allow all users to |
authenticate: Let all users in this directory authenticate against the 'nexus’ application

[MNexts [Cancel)

Figure 9.4: Creating a Nexus Crowd Application Authorization

Repository Management with Nexus 206 / 440

9.3 Configure Nexus Repository Manager Crowd Integration

9.3.1 Configure Nexus Repository Manager to Trust Crowd’s Secure URL (Op-
tional)

Although optional, we advise the connection from Nexus Repository Manager to your Crowd server to
use the HTTPS protocol.

If the Crowd Server certificate is not signed by a public certificate authority, you may have to explicitly
trust the server certificate using SSL support. A common symptom observed are peer not authent
icated messages, when trying to connect to the Crowd server.

Steps to explicitly trust the Crowd Server URL certificate in Nexus Repository Manager are:
1. Enable the SSL: Crowd capability

2. Add the Crowd server certificate to the truststore

3. Configure Crowd Connection URL using the HTTPS url

Note
The SSL: Crowd capability is only available in Nexus Repository Manager 2.7+. Older versions must
manually configure trust using an explicit truststore specified with JRE system properties.

9.3.1.1 Enabling the SSL: Crowd Capability

1. Login to Nexus as an Administrator.
2. In the sidebar menu, click Administration — Capabilities to open the Capabilities panel.

3. Click the Add button in the panel toolbar. Select SSL: Crowd in the Type field. Make sure the
Enabled checkbox is checked, and click the Save button.

Repository Management with Nexus 207 / 440

Welocome Capabilities L
%, Refresh Fg Add F g Delste
Type = Description Notes
f& Quireach : Management Automatically added on...
ﬁ@; SS5L: Crowd
f& Secure Central Ready: true, Tracked: 1 Automatically added on...
f& Smart Proxy: Identity 5802D5C2-C3F16778-BBODABT... Automatically added on...
i1 S5L: Crowd
Enabled: © & Enables usage
Active: of Mexus S5L
Trust Store for
Type: b Crowd server
ACOESS.
Notes: o
Save Cancel

Figure 9.5: SSL: Crowd Capability

9.3.1.2 Adding the Crowd Server Certificate to the Truststore

In order to add the server certificate of your Crowd server to the truststore, locate the HTTPS Crowd
Server URL and follow the Load from server instructions in Section 24.1.2.

9.3.2 Configure Nexus Crowd Connection

The Crowd Configuration screen displayed in Figure 9.6 can be accessed by users with administrative
privileges in Nexus Repository Manager by selecting Crowd in the Security section of the main menu.

Repository Management with Nexus 208 /440

Welocome Crowd Configuratior *

=« | Access Settings

Application Name dema

Application Password [ITT TP T 2]
Crowd Server URL https://localhost: 8495/ crowd .7
HTTP Timeout -

Test Connection

Save Cancel

Figure 9.6: Crowd Configuration Panel

This panel contains the following fields:

Application Name
This field contains the application name of a Crowd application. This value should match the value
in the Name field of the form shown in Figure 9.1.

Application Password
This field contains the application password of a Crowd application. This value should match the

value in the Password field of the form shown in Figure 9.1.

Crowd Server URL
This is the URL used to connect to the Crowd Server. Both http:// and https:// URLs are accepted.
You may need to trust the crowd server certificate if a https:// URL is used.

HTTP Timeout
The HTTP Timeout specifies the number of milliseconds the repository manager will wait for a
response from Crowd. A value of zero indicates that there is no timeout limit. Leave the field blank
to use the default HTTP timeout.

You can use the Test Connection button to validate if your connection to Crowd is working. Once you
have a working connection, do not forget to Save your configuration. Use Cancel to abort saving any
changes.

Repository Management with Nexus 209 /440

9.4 Configure Nexus Repository Manager Crowd Security

There are two approaches available to manage what privileges a Crowd user has when they login to Nexus
Repository Manager.

1. Mapping Crowd Groups to Nexus Roles
2. Mapping Crowd Users to Nexus Roles

Note

Mapping Crowd Groups to Nexus Repository Manager Roles is preferable because there is less config-
uration is involved overall in Nexus Repository Manager and assigning users to Crowd groups can be
centrally managed inside of Crowd by your security team after the initial repository manager setup.

9.4.1 Mapping a Crowd Group to Nexus Repository Manager Role

When mapping a Crowd group to a Nexus Repository Manager role, you are specifying the permissions (
via roles) that users within the Crowd group will have after they authenticate.

To map a Crowd group to a Nexus Repository Manager role, open the Roles panel by clicking on the
Roles link under the Security section of the sidebar menu. Click on the Add. .. button and select External
Role Mapping as shown in Figure 9.7 and the Map External Role dialog.

Welcome Crowd Configuration Users Roles *

3, Refresh | () Add...~ | () Delete

MName . MNexus Role ping Session Timeout Description

Maxus Adm External F@f Mapping 30 Administration role for Maxus
Mexus Ancnymous Role 80 Anonymous role for Nexus
Mexus Deployment Role &0 Deployment role for Nexus

Figure 9.7: Adding an External Role Mapping

Repository Management with Nexus 210/440

Map External Role *
Realm Crowd e A
Raole administrators » L]

Create Mapping Cancel ‘ *

Figure 9.8: Mapping an External Crowd Group to a Nexus Repository Manager Role

After choosing the Crowd realm, the Role drop-down should list all the Crowd groups the nexus crowd
application has access to. Select the group to would like to map in the Role field and click Create Mapping.

Note

If you have two or more groups in Crowd accessible to the nexus application with the same name but
in different directories, the repository manager will only list the first one that Crowd finds. Therefore,
Crowd administrators should avoid identically named groups in Crowd directories.

Before saving the group-to-role mapping, you must add at least one Nexus Repository Manager role
to the mapped group. After you have added the roles using the Add button, click the Save button.

Repository Management with Nexus 211 /440

Welcome Roles &
“Z Refresh (@ Add.. -~ & Delete
Name -« Realm Description
New Role Mapping Crowd
Metrics Endpoints nexus Allows access to mefrics endpoints.
Nexus Administrator Role nexus Administration role for Nexus
Nexus Anonymous Role nexus Anonymous role for Nexus
Nexus APl-Key Access nexus APl-Key Access role for Nexus.
New Role Mapping
Role Id &
Name dev &
Description External mapping for dev (Crowd) .7
Role/Privilege Management Add
7] Mexus Developer Role
Save I Cancel J

Figure 9.9: Unsaved Mapping of External Crowd dev Group to Developers Role

Saved mappings will appear in the list of roles with a mapping value of Crowd, as shown in Figure 9.10.

Repository Management with Nexus 212 /440

Welcome Roles

%, Refresh (&) Add.. ~ & Delete

Mame - Realm Description

dev Crowd Extemal mapping for dev (Crowd)
Metrics Endpoints Nexus Allows access to meftrics endpoints.
Nexus Administrator Role nexus Administration role for Nexus
Mexus Anonymous Role Nexus Anonymous role for Nexus

Mexus APl-Key Access nexus APl-Key Access role for Nexus.
dev

Configuration Role Tree

Role Id dev 2]

Name dev 2]

Description External mapping for dev (Crowd) L]
Rele/Privilege Management Add

] Mexus Developer Role

Save J Reset ‘

Figure 9.10: Mapped External Crowd dev Group to Nexus Developers Role

9.4.2 Mapping a Crowd User to Nexus Role

To illustrate this feature, consider the Crowd server user with an id of brian. As visible in the Crowd
administrative interface in Figure 9.11, the user is a member of the dev group.

Repository Management with Nexus

X CROWD

Applications

Search Users
Add User
Import Users
Reset Password

Remove User

Admin User

Directories

View User — brian

Details Attributes Groups Applications

These are the groups the user is a member of.

Group Description
dev developers
Add Groups Remove Groups

Active

true

Figure 9.11: Crowd Groups for User "brian"

To add an External User Role Mapping, open the Users panel in the repository manager by clicking Users

in the Security section of the sidebar menu.

Click on the Add... button and select External User Role Mapping from the drop-down as shown in

Figure 9.12.

Welcome

Crowd Configuration Users %/|| Roles

2 Refresh | () Add...~ | @ Delete [All Configured Users~

User ID Mexus User Email

admin External User Role Mapping changeme(@yourcompany.com
deployment defaultt Deployment Usel - changeme! {@yourcompany.com
ancnymous default Nexus Ancnynmous User changeme2@yourcompany.com

Je

Reoles

Mexus Adm...

Repo: Al Q...
Repo: Al Q...

Figure 9.12: Adding an External User Role Mapping

Selecting External User Role Mapping will show a mapping panel where you can locate a user by Crowd

user id.

Repository Management with Nexus 214/ 440

User Role Mapping

Enter a User ID brian T |R
|
|

Realm

Figure 9.13: Locate a Crowd User by User ID

Typing the Crowd user id - for example brian - in the Enter a User ID field and clicking the magnifying
glass icon, will cause the repository manager to search for a user ID brian in all known realms, including
Crowd.

Once you locate the Crowd user, use Add button to add roles to the Crowd User. You must map at least
one role to the Crowd managed user in order to Save. Figure 9.14 displays the brian Crowd realm
user as a member of the dev Crowd group and the mapped role called Nexus Administator Role. External
groups like dev are bolded in the Role Managment list.

Repository Management with Nexus 215/440

Welcome Roles XS Users =
“Z Refresh () Add.. ~ @& Delete [All Configured Users =

User ID Realm Email Roles

admin default changeme@yourcompany.com Nexus Administrator Role

deployment default changeme!@yourcompany.com Repo: All Repositories (Full Control), Mexus Deplo. ..
ancnymous defaull changeme2@yourcompany.com Nexus Anonymous Role, Repo: All Repositories (...
brian Crowd noopi@sonatype.com dev, Nexus Administrator Role

brian

Config Privilege Trace Role Tree

User ID:
Realm:
First Name:
Last Name:
Email:

Reole Management Add
] dev

[C] Nexus Administrator Role

Save I Reset J

Figure 9.14: Mapped External Crowd User Example

9.5 Activate Nexus Repository Manager Crowd Realm

The final step to allow Crowd users to authenticate against Nexus Repository Manager is to activate the
Crowd authorization realm in the Security Settings displayed in Figure 9.15.

Repository Management with Nexus 216 /440

| Sgcurity Settings

Selected Realms Available Realms

[=] User Token Reaim [=] Rut Auth Realm

[=] %ml Authenticating Realm [=] NuGet API-Key Realm

[=] %l Authorizing Realm |=] Crowd Realm

,E Enterprise LOAP Authentication Realm

'5.5 =-| Crowd Realm

EEER

Figure 9.15: Activating the Crowd Realm

1. Select Administration — Server from the sidebar menu.
2. Scroll down to the Security Settings section.
3. Drag Crowd Realm from the list of Available Realms to the end of the Selected Realms list.

4. Save the server settings.

Repository Management with Nexus 217 /440

Chapter 10

Procurement Suite

Available in Nexus Repository Manager only

10.1 Introduction

The Procurement Suite of Nexus Repository Manager provides an organization with control over what
components are allowed into a repository from an external, proxied repository such as the Central Repos-
itory. Such control can be a prerequisite for organizations unwilling or unable to trust the entire contents
of an external public repository. If an organization is developing mission critical code, they will likely
want to subject every third party dependency to intense scrutiny and testing before making the component
available to build a release or support a team of developers. In most Enterprise development environ-
ments, a developer can’t just decide to add in a new dependency to Hibernate or to the Spring Framework
on a whim; the decision to add dependencies to third-party libraries will need to be funnelled through
an oversight process that relies on an architect or an administrator to promote components to a certified
release repository.

Another more common experience is an organization that needs to proxy like the Central Repository or
any other public repository, but wants to limit access to specific versions of components or prevent de-
pendencies on all components contained under a specific group. Some organizations are more amenable
to trusting the contents of a remote, proxied repository like the Central Repository, but they also need the
ability to block certain dependencies. Maybe you work on a team that needs to limit access to depen-
dencies with a certain license, or maybe you just want to make sure no one uses a problematic version

Repository Management with Nexus 218 /440

of Hibernate with a known bug? The procurement suite is the tool that provides for both coarse and
fine-grained control of the components that can appear in a repository.

10.2 The Stages of Procurement

A procured repository is a hosted Repository that procures components from a Proxy Repository while
procurement is enabled. For example, one could create a hosted repository named "Approved From
Central" and then configure this hosted repository to procure components from the "Central" repository.
Once the hosted repository has been created and the source of procurement has been configured, the
repository will obtain components from the proxy repository as long as procurement is activated. If you
start procurement for a hosted repository, the hosted repository will fetch components from the proxy
repository specified in the procurement settings. If you stop procurement for a hosted repository, no
additional components will be retrieved from the proxy repository specified in the procurement settings.
Without procurement active it is a hosted repository and therefore completely static.

The ability to enable or disable procurement for a hosted repository comes in very handy when you want
to "certify" a hosted repository as containing all of the components (no more and no less) required for a
production build. You can start procurement, run a build that triggers component procurement, and then
stop procurement, knowing that the procured repository now contains all of the components required for
building a specific project. Stopping procurement assures you that the contents of the repository will not
change if the third-party, external proxied repository does. This is an extra level of assurance that your
release components depend on a set of components under your complete control.

10.3 Two Approaches to Procurement

There are two main use cases for the Procurement Suite. In the first use case, the Procured Release
Repository, the procurement features are used to create a procured release repository to make sure that
the organization has full control over the components that are making it into a production release. The
other use case, the Procured Development Repository, is for organizations that need more up-front control
over which components are allowed during the development of a project. The following sections describe
these two uses cases in more detail.

Repository Management with Nexus 219/ 440

10.3.1 Procured Release Repository

The Procurement Suite can be used in two different ways. In the "Procured Release" mode, developers
work with a proxied third-party repository exactly as they would without the Procurement Suite. When
a developer needs to add a dependency on a new component, the repository manager will retrieve the
component from the third-party repository (like Central or Apache Snapshots) and this component will
be served to Maven via a proxied repository. When a QA or Release engineer needs to build a release or
staging component, the Release or QA build would be configured to execute against a procured repository
or repository group with only approved and procured repositories. A procured repository is one that only
serves the components that have been explicitly approved using the Procurement Suite.

| JA/Release Hepositeries |

procurement

3rd Party '::% |
Repostiory Development Hepository

Figure 10.1: Procurement to a Certified Release Repository

In this model, developers can add as many third-party dependencies as they want, and it is the responsibil-
ity of the QA and release engineers to approve (or procure) components from the development Repository
to the QA/Release repository. Developers can move forward, adding dependencies freely from a third-
party, proxied repository, but once it is time to populate a release repository, an administrator can audit
the required components, create a hosted repository, turn on procurement, populate the repository, and
then deactivate procurement. This has the effect of "locking down" the components that are involved in a
production release.

10.3.2 Procured Development Repository

There are some development environments that require even more control over which components can
be used and referenced by developers. In these situations, it might make sense to only allow developers
to work with a procured repository. In this mode, a developer must ask an administrator for permission
to add a dependency on a particular third-party component. A procurement manager would then have to
approve the component or group of components so that they would be made available to the developers.
This is the "ask-first" model for organizations that want to control which components make it into the
development cycle.

Repository Management with Nexus 220/ 440

procurament

ard Party ~ Full ~ Development
Aepository Repository Repository

Figure 10.2: Procurement to a Certified Development Repository

This is a model common in industries that have strict oversight requirements. More often than not, banks,
hospitals, and government agencies have fairly strict regulations on the software that can be used by large
development teams. With the Procured Development Repository approach, an architecture group can
have full control over what components can be referenced by a large development team.

10.3.3 Providing Access with a Repository Group

In a typical usage a software build relies on approved components that have successfully passed procure-
ment and additional components that have been authored internally in the organization and are available
on the repository manager as well.

In order to use a combination of such components together with the procured component, you should set
up a repository group that contains all repositories with preapproved components as well as the procure-
ment repository. For example, the release and snapshot repositories could be added to the group, based
on the assumption that any internally authored components deployed there are automatically approved.
In addition, you could add the third-party repository, if all uploads to it are done with prior approval of
the specific components.

Once this repository group is set up, you can reference it from any tool just like the public group, e.g., in
a separate settings.xml used by builds that can only have access to the approved components.

Tip

When running builds you need to make sure that you run to run clean builds. No components from other
builds, accessing non-procured repositories, should be in the local repository of the build. This ensures
that only approved components are used in the build. The easiest way to achieve this is to clear the
local repository before a build or to run the build against a project specific local repository.

Repository Management with Nexus 221 /440

10.4 Setting up a Procured Repository

If you installed Nexus Repository Manager, the Nexus Repository Managercurement Suite is already
installed and available via the Artifact Procurement option in the Enterprise menu of the user interface.

This section will walk through the process of creating and configuring a hosted repository named Ap-
proved From Central which will be procured from the Central proxy repository. Setting up a procured
repository consists of the following steps:

Enable the remote index downloads for the proxy repository, that will act as the source of the procured
components.

* Create a hosted repository, which will be the target of the procurement.
* Configure procurement for the hosted repository.

* Configure the procurement rules.

Before configuring a procured repository, you need to make sure that you have enabled Remote Index
downloading for the proxied repository that will serve as the source for your procured repository.

Note

If you are attempting to procure components from a remote repository that does not have a repository
index, you can still use the procurement suite. Without a remote repository index, you will need to
configure procurement rules manually without the benefit of the already populated repository tree shown
in Section 10.5.

10.4.1 Enable Remote Index Downloads

When you configure procurement rules for a hosted repository, the administrative interface displays the
repository as a tree view using the Maven repository format of the of groups and components using pop-
ulated from remote repository’s index. Nexus Repository Manager ships with a set of proxy repositories,
but remote index downloading is disabled by default.

To use procurement effectively, you will need to tell Nexus Repository Manager to download the remote
indexes for a proxy repository. Click on Repositories under Views/Repositories in the main menu, then

Repository Management with Nexus 222 /440

click on the Central Repository in the list of repositories. Click on the Configuration tab, locate Download
Remote Indexes, and switch this option to True as shown in Figure 10.3.

Repositories

“ZRefresh @ Add... v @Delete [Trash... v [User Managad Repositories

Repository - Type Quality Format Policy Reposi
JavaFx hosted maven2 Release In Sen
ksoap2-andraid proxy EECSCLIEP maven? Releass In Serj
Mavan Central proxy @EDSCLIEP maven2 Release In Seri
. rre—— - - -

Maven Central

Brows= Storage | Browse Index | Configuration | Mirors | Summary | Browse Remotd

~ Remote Repository Access

Remote Storage Laocation http://repo1.maven.org/maven2/ (?)
Download Remote Indexes v|@

Auto Blocking Enablad True v|@

. . False
File Content Validation e)
Checksum Palicy ‘Warn v @
Authenticatinn fantinnall
Save || Reset

Figure 10.3: Enabling Remote Index Downloads for a Proxy Repository

Click on the Save button in the dialog shown in Figure 10.3. Right-click on the repository row in the
Repositories list and select Update Index. The repository manager will then download the remote reposi-
tory index and recreate the index for any repository groups that contain this proxied repository.

The repository manager may take a few minutes to download the remote index for a large repository.
Depending on your connection to the Internet, this process can take anywhere from under a minute to
a few minutes. The size of the remote index for the Central Repository currently exceeds SOMB and is
growing in parallel to the size of the repository itself.

To check on the status of the remote index download, click on System Feeds under Views/Repositories in
the main menu. Click on the last feed to see a list of System Changes in Nexus. If you see a log entry like
the one highlighted in Figure 10.4, the repository manager has successfully completd the download of the
remote index from the Central Repository.

Repository Management with Nexus 223 /440

SBystem Feeds

:Refresl'i: | Subscribe

Feed & URL

Broken ariifacts in all Nexus repositories (checksum errors, v hitpilocalhost: 8081/ nexus/service/localfeeds/brokenArtifacts

Mew artifacts in all Nexus repositories (cached or deployed). hitpilocalhost:8081/nexus/servicellocalfeedsirecentiCacheOrDeployments m
Mew cached artifacts in all Nexus repositories (cached). http:/localhost:B0B1 /nexus/servicellocalfeeds/recentlyCached
New deployed artifacts in all Nexus repositories (deployed). hitpilocalhost:8081/nexus/service/localfeedsrecentlyDeployed

Recent storage changes in all Nexus repositor"ﬁs (caches, d http:ilocalhost:8081/nexus/servicellocalfeeds/recentChanges =

#

System changes in Nexus.

Title Date
Reindexing Today 1:58 pm
Reindexing repository with ID=central : Process started on Sun Dec 21 13:56:05 CST 2008, finished successfully on Sun Dec 21
13:58:33 CST 2008.

Reindexing Today 1:56 pm
Reindexing repesitory with ID=central : Process started on Sun Dec 21 13:56:05 CST 2008, not yet finished..

Fri 10:41 pm

procurement.scan

Figure 10.4: Verification that the Remote Index has been Downloaded

10.4.2 Create a Hosted Repository

When you configure procurement you are establishing a relationship between a proxy repository and a
hosted repository. The hosted repository will be the static container for the components, while the proxy
repository acts as the component source. To create a hosted repository, select Repositories from the
Views/Repositories section of the main menu, and click on the Add button selecting Hosted Repository as

shown in Figure 10.5.

Repository Management with Nexus 224 /440

Welcome Repositories %
“Z Refresh () Add...~ (3 Delete [Trash...» [User Managed Repositories v
Repository « Type Quality Format Policy
Apache Srapshots proxy r) mavenz Snapshot
Approved From Central hosted 4] mavenz Release

alute proxy - e maven? Release

mrmhin imeatinn hnntnd \ —— - Balnnna
Approved From Central
Browse Index Browse Storage | Configuration Mirrors Routing -+

Repository ID 2]
Repository Name Approved From Central 2]
Repository Type L=

Provider R

Format -4

Repository Policy Release v

Figure 10.5: Adding the "Approved From Central" Hosted Repository

Selecting Hosted Repository will then load the configuration form. Create a repository with a Repository
ID of approved-from-central and a name of Approved From Central. Make the release
policy Release. Click the Save button to create the new hosted repository.

10.4.3 Configuring Procurement for Hosted Repository

At this point, the list of Repositories will have a new Hosted repository named +Approved From Central=.
The next step is to start procurement for the new repository. When you do this, you are establishing a re-
lationship between the new hosted repository and another repository as source of components. Typically,
this source is a proxy repository. In this case, we’re configuring procurement for the repository and we’re
telling the Procurement Suite to procure components from the Central proxy repository. To configure this
relationship and to start procurement, click on Artifact Procurement under the Enterprise menu. In the
Procurement panel, click on Add Procured Repository as shown in Figure 10.6.

Repository Management with Nexus 225 /440

Welcome Procurement %
“Z; Refresh () Add Procured Repositery

Repository - Policy Procured From Repository Path
Approved From Central Release Central hitp:/flocalhost:B0B1/nexus/content/....

Approved From Central
2, Refresh (L) Add Freeform Rule

=) Approved From Central
& [abbot

Figure 10.6: Adding a Procured Repository

You will then be presented with the Start Procurement dialog as shown in Figure 10.7. Select the "Central"
proxy repository from the list of available Source repositories.

Start Procurement *
Repository Approved From Central =
Source Central >

OK Cancel

Figure 10.7: Configuring Procurement for a Hosted Repository

Procurement is now configured and started. If you are using an instance of Nexus Repository Manager
installed on localhost port 8081, you can configure your clients to reference the new repository at http:
//localhost:8081/nexus/content/repositories/approved-from-central.

By default, all components are denied and without further customization of the procurement rules no
components will be available in the new repository.

One interesting thing to note about the procured repository is that the repository type changed once pro-
curement was started. When procurement is activated for a hosted repository, the repository will not
show up in the repositories list as a User Managed Repository. Instead it will show up as a proxy repos-
itory in the list of Nexus Managed Repositories. Use the drop-down for User Managed/Nexus Managed
Repositories in the Repositories list. Click Refresh in the Repositories list, and look at the Approved
From Central repository in the list of Nexus Managed Repositories. You will see that the repository type

Repository Management with Nexus 226 /440

column contains proxy as shown in Figure 10.8. When procurement is started for a hosted repository,
it is effectively a proxy repository, and when it is stopped it will revert back to being a normal hosted

repository.

Welcome Repositories
2, Refrash - F@ Trash...~ [["|Nexus Managed Repositories +
Repository - Type Quality Format Policy R

Approved From Central proxy !] maven2 Release |

Approved From Central

Browse Index Browse Storage Routing Smart Proxy Summary

Repository ID: approved-from-central
Repository Name: Approved From Central
Repository Type: proxy
Repository Policy: Release
Repaository Format: mawven2
Contained in groups:
Approved Artifacts Only
Remote URL: repositories:central/

Figure 10.8: Hosted Repository is a Nexus Managed Proxy Repository while Procurement is Active

10.4.4 Procured Repository Administration

Once you’ve defined the relationship between a hosted repository and a proxy repository and you have
started procurement, you can start defining the rules that will control which components are allowed in
a procured repository and which components are denied. You can also start and stop procurement. This
section details some of the administration panels and features that are available for a procured repository.

A procurement rule is a rule to allow or deny the procurement of a group, component, or a collection of
groups or components. You load the Artifact Procurement interface by selecting Artifact Procurement
in the Enterprise menu of the left-hand navigation. Clicking on this link will load a list of procured
repositories. Clicking on the repository will display the proxied source repository and the current content
of the procured repository in a tree as shown in Figure 10.9.

This section will illustrate the steps required for blocking access to a specific component and then se-
lectively allowing access to a particular version of that same component. This is a common use case in
organizations that want to standardize specific versions of a particular dependency.

Repository Management with Nexus 227 /440

Note
If you are attempting to procure components from a remote repository that does not have a repository

index, you can still use the procurement suite. Without a remote repository index, you will need to
configure procurement rules manually without the benefit of the already populated repository tree shown

in this section.

Welcome Procurement

“Z Refresh (L) Add Procured Repository

Procured From Repository Path
Central http:/flocalhost:B081/nex...

Repository - Policy
Approved From Central Release

Approved From Central
2 Refresh () Add Freeform Rule

=l =) Approved From Central
= [~ abbot
=) =5 acegisecurity
=) =5 acegi-security
BCJ0s
@] 0.51

Figure 10.9: Viewing a Repository in the Artifact Procurement Interface

The directory tree in Figure 10.9 is the index of the proxy repository from which components are being

procured.

10.5 Configuring Procurement

To configure a procurement rule, right-click on a folder in the tree. Figure 10.10 displays the procurement
interface after right-clicking on the org/eclipse/aether component folder.

Repository Management with Nexus 228 /440

Approved From Central

3 Refresh (L) Add Freeform Rule

[] easystub
[_] easytesting
[_] eccosolutions

= eclipse
= aether Apply a Rule Tor
() aether Everything in this group (org.eclipse.aether:*:*)
 [_] aether - _ _
&] aether Everything in this group and its sub-groups {org.eclipse.aether.*:*:*)
 [_] aether Any group starting with this prefix (org.eclipse.aether*:*:*)
== SIS

Figure 10.10: Applying a Rule to a Component Folder for org/elipse/aether

In this dialog, we are deciding to configure a rule for everything within the group and its sub groups
that display the rule configuration dialog displayed in Figure 10.11. The dialog to add rules allows you
to select the available rule, e.g., a Forced Approve/Deny Rule, and configure the rule properties. The
displayed dialog approves all components Eclipse Aether components.

Add Rule for org.eclipse.aether *
Available Rules Forced Approve/Deny Rule i
Description Farced approve/deny rule for a group, artifact, or version.

Rule Properties
Is approved?: & @

Existing Rule(s)

There are no rules applied.

Save J Cancel

Figure 10.11: Approving org.eclipse.aether Components

By right-clicking on the top level folder of the repository, as displayed in Figure 10.12, you can configure
rules for the complete repository as well as access all configured rules via the Applied Rules option.

Repository Management with Nexus

229/ 440

Approved From Central
“% Refresh () Add Freeform Rule
=1 =) Approved Fram Canteal
&] abbe Apply a Rule To:
=355 aced All groups, artifacts and versions (")
=234 A User-Entered GAV (specified by user)
@ 3 _
=[] Applied Rules...
@064

Figure 10.12: Accessing the Global Repository Configuration

This allows you to set up a global rule, like blocking all components from the repository. Once you have
configured this you can then selectively allow specific versions of a component. Figure 10.13 displays
the options available for configuring rules for a specific component version of the Apache Commons

Collections component.

Repository Management with Nexus

230 /440

Approved From Central

3, Refresh (L) Add Freeform Rule
|t [commons-codec
=127 commens-collections
=127 commens-collections

[[7 commens
[# [7 commeons-cg
[# [7 commeons-cg
[# [7 commons-dg
[# [commons-dt

HCA1.0

H 220

[H 7 2.0.20020814.015853

[[/ 2.0.20020914.020746

[H 7 2.0.20020014.020858

H A2

H[A21.1

[H (7 20030418.0B3855

[(27 20031027.000000

@ A 20040 Apply a Rule Teo:

@ 32 20040 Everything in this group (commons-collections:*:*)

HA30 Everything in this group and its sub-groups (commens-collections.*:*:*)
[H (7 3.0-de

234 Any group starting with this prefix {commons-collections®*:*)
@32 Everything with this artifact id {*:commons-collections:*)

H [23.2.1

Any artifact starting with this prefix (*:commons-collections*®:®)

All versions of this artifact (commons-collections::commaons-coliections:*)

Exactly this artifact (commons-collections:commons-collections:3.1)

Applied Rules...

Figure 10.13: Procurement Configurations Options for a Specific Component Version

Once you approve a specific version, the tree view will change the icons for the component displaying
green checkmarks for approved components and red cross lines for denied components as visible in Fig-
ure 10.14. The icons are updated for signature validation rule violations, if applicable, showing a yellow

icon.

Repository Management with Nexus 231 /440

= 7 commons-collections
= £7 commons-collections

=210

=220

= 7 2.0.20020814.015853

= (7 2.0.20020814.020746

= (7 2.0.20020814.020858

2241

=224

(7 20030418.083655

@ (A 20031027 000000

& [/ 20040102.233541

& [/ 20040616

=230

& [57 3.0-dev2

=934
f] commons-collections-3.1-javadoc. jar
f] commons-collections-3.1-sources jar
= commons-collections-3.1 jar

=232

| [LA3.241

Figure 10.14: Procurement Repository Tree View with Rule Visualization

An example dialog of Applied Rules for the complete repository, as configured by ::*, is visible in Fig-
ure 10.15. This repository currently denies access to all components, only approving components within
org/apache/maven and org/eclipse/aether’.

This dialog gives the procurement administrator a fine-grained view into the rules that apply to the com-
plete repository. A view of all Applied Rules for a specific repository folder can be access by right-
clicking on the folder and selecting Applied Rules. The dialog allows you to remove specific rules or all
rules as well.

Repository Management with Nexus 232 /440

Rules for everything (*:*:¥) *
Applied Rules Remove
| Approve for org.apache. maven:** Remove Al
|/ Deny for *:=*

| Approve for org.eclipse.asther: ™ L

Save I Cancel J

Figure 10.15: Applied Rules for the Complete Procurement Repository

The Refresh button above the tree view of a repository tree view allows you to update the tree view and to
see all of the applied rules. The Add Freeform Rule button allows you to display the dialog to manually
configure a procurement rule displayed in Figure 10.16. This is especially useful if the tree view is not
complete due to a missing repository index or if you have detailed knowledge of the component to which
you want to apply a rule. The format for entering a specific component in the Enter GAV input field is
the short form for a Maven component coordinate using the groupld, artifactld and version separated by
:. The * character can be used as a wildcard for a complete coordinate.

Add Rule for a Specified GAV *
Available Rules Farced Approve/Deny Rule w7
Description Farced approve/deny rule for 2 group, artifact, or version.

Enter a GAV: |org.apache.ma'.ren:"-.* 2]

Rule Properties

Is approved?: ™ @

Existing Rule(s)

There are no rules applied.

Save J Cancel

Figure 10.16: Adding a Freeform Rule

Examples for freeform rule coordinates are:

Repository Management with Nexus 233 /440

* k%
matches any component in the complete repository

org.apache.ant:*:x
matches any component with the groupld org. apache. ant located in org/apache/ant

org.apache.ant.x:x: %
matches any component with the groupld org.apache. ant located in org/apache/ant as
well as any sub-groups e.g., org.apache.ant.ant

These coordinates are displayed in the Maven build output log when retrieving a component fails. You
can see them as part of the error message with the addition of the packaging type. It is therefore possible
to cut and paste the respective coordinates from the build output and insert them into a freeform rule.
Once you have done that you can kick off the build again, potentially forcing downloads with the option
-U and continue procurement configuration for further components.

10.6 Stopping Procurement

Some organizations may want to lock down the components that a release build can depend upon. It is
also a good idea to make sure that your build isn’t going to be affected by changes to a repository not
under you control. A procurement administrator can configure a procured repository, start procurement,
and run an enterprise build against the repository to populate the procured, hosted repository with all of
the necessary components. After this process, the procurement administrator can stop procurement and
continue to run the same release build against the hosted repository that now contains all of the procured
components while being a completely static repository.

To stop procurement, go to the procurement management interface by clicking on Artifact Procurement
under the Enterprise section of the menu. Right-click on the repository and choose Stop Procurement as
shown in Figure 10.17.

Repository Management with Nexus 234 /440

Welcome Procurement %

2 Refresh (L) Add Procured Repository

Repository - Policy Procured From Repo
Approved From Central Relagea antral Bt
Repair Index |
Update Indax
Stop Procurement

Approved From Central

% Refresh (L)) Add Fresform Rule

Figure 10.17: Stopping Procurement for a Procured Repository

After choosing Stop Procurement, you will then see a dialog confirming your decision to stop procure-
ment. Once procurement is stopped, the procured repository will revert back to being a hosted repository.

In order to add further components, you create a procurement repository off the hosted repository as you
did initially. If the repository contains components already, activating procurement will automatically

generate rules that allow all components already within the repository.

Repository Management with Nexus 235/ 440

Chapter 11

Improved Releases with Staging

Available in Nexus Repository Manager only

11.1 Introduction

If you release software, you will often need to test a release before deploying it to a production system or
an externally accessible repository. For example, if you are developing a large, enterprise web application,
you may want to stage a release candidate to a staging system and perform a series of rigorous tests
before a release manager makes a decision to either return a system to development or deploy a system to
production.

The staging suite in Nexus Repository Manager allows an organization to create a temporary staging
repository and to manage the promotion of components from a staging repository to a release repository.
This ability to create an isolated, release candidate repository that can be discarded or promoted makes it
possible to support the decisions that go into certifying a release, while the certification process is done
on the same binaries that will ultimately be released.

Repository Management with Nexus 236 /440

11.1.1 Releasing Software without a Staging Repository

Without the staging suite, when a developer deploys a component to a hosted repository such as the release
repository, this component is published and immediately made available, having no oversight, no process
and no certification process. There is no chance to test the component before writing the component to a
hosted repository. If there is a mistake in the release, often the only option available is to republish the
components to the release repository or deploy a new version of the components.

Nexus

Deploy to Hosted $ Hosted
{ Repository j: Hepository

Figure 11.1: Release Deployment Without the Nexus Staging Suite

While this is acceptable for some users, organizations and enterprises with a QA cycle often need a tempo-
rary storage for potential release candidates: a staging repository. With the staging suite, an organization
can automatically stage releases to a temporary repository that can then be used to test and certify a set of
components, before they are published to a final release repository. This temporary repository can then be
promoted as a whole or dropped, depending on the results of testing. When used, the binary components
being tested and certified are the identical components that will ultimately be released. You will not have
a clean fresh build kicked off after the certification finished, as is often the case without a staging suite
being used.

11.1.2 How the Staging Suite Works

Here’s how staging works in Nexus Repository Manager:

1. A developer deploys a component (or a set of components) to Nexus Repository Manager.

2. The staging suite intercepts this deployment and determines if the deployment matches for a staging
profile.

3. If a match is found, a temporary staging repository is created and the components are deployed to
this repository.

4. Once the developer has deployed a set of components, they will then "Close" the staging repository.

Repository Management with Nexus 237 /440

5. The Staging Suite will then add this temporary staging repository to one or more Target Repository
Groups.

Once the staging repository is closed and has been added to a target repository group, the components in
the staging repository are available to users for testing and certification via a repository group. Tests can
be performed on the components as if they were already published in a hosted repository. At this point
different actions can be performed with the staging repository:

Release
A user can "release" a staging repository and select a hosted repository to which to publish compo-
nents. Releasing the contents of a repository publishes all components from the staging repository
to a hosted repository and deletes the temporary staging repository.

Drop
A user can "drop" a staging repository. Dropping a staging repository will remove it from any
groups and delete the temporary staging repository.

Promote
If your repository manager contains Build Promotion profiles, you will also see an option to "pro-
mote" a staging repository to a Build Promotion Group. When you promote a staging repository
you expose the contents of that staging repository via additional groups. Build Promotion profiles
are explained in detail in the next section.

Fav— Nexus

o

Hosted | Hosted
Repository Rnpimw

Tgtnaporary Approval
aing
Aepasitory Pracess

Mexus Staging Suite

Figure 11.2: Release Deployment with the Staging Suite

Repository Management with Nexus 238 /440

Haosted
@ @ @ Repository

Figure 11.3: The Stages of a Staging Repository Starting with Deployment and Ending with a Release or
a Drop of the Repository

11.2 Configuring the Staging Suite

11.2.1 Overview

The Staging Suite is part of the default Nexus Repository Manager install and is accessible with the menu
items Staging Profiles, Staging Repositories, Staging Ruleset, and Staging Upload options in the left-hand
navigation menu of the user interface called Build Promotion.

Staging Profiles define the rules by which component deployments from your project are intercepted by
the repository manager and staged in Staging Repositories.

Staging Repositories are dynamically created by the repository manager as they are needed. They are
temporary holding repositories for your components that are used for the different staging related steps.
Using them in the user interface, users can promote the contents of the staging repository to a hosted
repository, discard them, and perform other tasks.

Staging Rulesets allow you to define rules that the components being deployed have to follow in order to
allow successful deployment.

Staging Upload allows you to manually upload components via the user interface rather than by using
your build system.

Repository Management with Nexus 239 /440

11.2.2 Configuring a Staging Profile

Staging profiles control the process by which components are selected for staging. When you define a
Staging profile, you are defining a set of rules which will control the way in that the repository manager
intercepts a component deployment and what actions to perform during and after staging the components.
When you click on Staging Profiles in the main menu, you will see a list of configured staging profiles.
This list allows you to Add... and Delete staging profiles. Click on an existing staging profile in the list
and the panel below the list will display the configuration of the profile.

The list of staging profiles displayed also determines the order in which the profiles are examined when a
component is deployed to staging. Going down the list each profile is checked for a match of the deployed
component characteristics to the configuration of the profile. If a match is found a staging repository for
this profile with the deployed components is created. Otherwise the next profile in the list is examined.
Specifically with implicit matching criteria being used for your deployments as explained in more detail
below, this order becomes important and can be controlled by selecting a staging profile and using the
Move Up and Move Down buttons on the top of the list. Once you have created the desired order, press
the Save Order button and confirm the order in the dialog.

Clicking on Add. .. will display the drop-down menu shown in Figure 11.4.

Welcome Staging Profiles

2 Refresh | () Add...~ | @) Delete 4 Move Up % Mowve Down

Name Staging Profile {EIJ Repo Target

Build Promotion Profile

Figure 11.4: Adding a Staging Profile

Selecting Staging Profile will create a new staging profile and display the form shown in Figure 11.5.

Figure 11.5 defines a staging profile named Test. It is configured to only intercept explicit deployments
in the Profile Selection Strategy using the Profile ID and the Nexus Staging Maven Plugin. It uses the tem-
plate Maven?2 (hosted, release) for newly created temporary staging repositories, and it will automatically
add closed staging repositories to the Public Repositories group. In addition, it is configured to verify the
deployment against the rules defined in Nexus IQ Server for the CLM Application Id bom1-12345678.

Repository Management with Nexus

240/ 440

Welcome

Staging Profiles

% Refresh () Add...~ (&) Delete 4 Move Up % Move Down () Save Order

Profile Selection Strategy
Searchable Repaositories
Staging Mode

Template

Repaository Target
Release Repaository

CLM Application Id
Content Type

Target Groups
5 Public Repeositories

Marne Mode Repo Target Release Re... Target Groups

NEAUSLIADDS Uepuy diiu ul upsad SUALY PE Sallipns MIEICAS 5D F UL MUERAUD I ED

TrainingRelease Deploy and Ul Uplead Simpligility Releases Public Repeositories

CLMTest Deploy All (Maven2) Releases Approved Artifacts Only, Public Reps
Test Deploy and Ul Uplead All (Maven2) Releases Public Repesitories

Test

Profile ID 12f3al05e1212751

Deploy URL http://localhost:B8081/ nexus, service/local/staging/deploy/ maven2

Profile Name -

Explicit Only - only selected by ID
™ @

Deploy and UI Upload

Mawven2 (hosted, release)

All (Maven2)

Releases

bom1-12345678

Available Groups
5 Approved Artifacts Only

Figure 11.5: Creating a New Staging Profile

The form allows you to configure a profile with the following fields:

Profile ID and Deploy URL

These two fields are displayed as "read only" once a profile has been created. The Profile ID
displays the unique identifier that can be used for staging to this repository using the Nexus Staging
Maven plugin. The Deploy URL displays the generic staging URL that can be used with the default
Maven Deploy Plugin together with the Repository Target configuration to intercept the deployment
and move the components into the Staging Suite instead.

Profile Name

The name of the staging profile. This can be an arbitrary value. It is simply a convenience for

Repository Management with Nexus 241 /440

the Administrator, and it is also used to create roles that are used to grant permissions to view and
manipulate staging repositories created by this profile.

Profile Selection Strategy
Select the strategy used by the repository manager to select this staging profile. Explicit o
r Implicit is the default behavior and causes the repository manager to select the profile by
the provided staging profile identifier and to fall back to an automatic determination, if none is
provided. It is necessary to be used with the Maven deploy plugin and the correct staging profile is
determined using repository targets together with the generic deploy URL.

When using the Nexus Staging Maven plugin for deployments, and therefore an explicitly defined
staging profile in the project POM, the setting should be changed to Explicit Only. This will
prevent the profile from implicitly capturing a deployment in this repository due to the matching
defined and allow the repository manager to ensure that the deployment reaches the staging profile
with the configured staging profile ID, even if the default matching and staging profile order could
potentially cause a deployment to end up in a different profile.

Searchable Repositories
The default value of enabling this feature will cause any new components in this staging profile to
be added to the indexes and therefore be available in search queries. Disable this feature to "hide"
components in staging.

Staging Mode
This field contains the options Deploy, Ul Upload, and Deploy and UI Upload. This
controls how components can be staged to this staging profile. If Deploy is selected, components
can only be deployed using Maven to upload build components. If UI Upload is selected, users can
upload components using the user interface.

Template
Defines the template for the format of the temporary staging repositories created by this staging
profile. The current version of Nexus Repository Manager provides the option Maven2 (host
ed, release) only. Additional templates can be supplied by plugins that enable staging for
other repository types. An example for such a plugin is the Nexus Yum Plugin.

Repository Target
When a developer deploys a component to the generic Deploy URL, the Staging Suite will check to
see if the component matches the patterns defined in this Repository Target. The repository target
defines the "trigger" for the creation of a staging repository from this staging profile and is only
needed for implicit deployments with the Deploy URL and not for explicit deployments using the
Profile ID.

Release Repository
Staged components are stored in a temporary staging repository that is made available via Target
Groups. Once a staged deployment has been successfully tested, components contained in the
temporary staging repository are promoted to a hosted repository as their final storage place. The
Release Repository setting configures this target release repository for this staging profile.

http://code.google.com/p/nexus-yum-plugin/

Repository Management with Nexus 242 /440

CLM Application Id
Configure the application identifier defined in the Nexus IQ Server to allow to use of the rules
defined there for staging. More details can be found in Section 11.6.

Content Type
The repository manager can create staging repositories for repositories of type Maven2. This value
is automatically selected based on the chosen template.

Target Groups

When a Staging Repository is closed and is made available to users and developers involved in
the testing process, the temporary Staging Repository is added to one or more Repository Groups.
This field defines those groups. It is a best practice to create a separate group, different from the
group typically used for development like the default Public Repositories group for staging. This
prevents the staged components from leaking to all users and allows you to control access to them
via security settings for the separate repository group. In many cases multiple target groups can be
useful for different user groups to have access.

Close Repository Notification Settings

After a developer has deployed a set of related release components, a staging repository is closed.
This means that no further components can be deployed to the same staging repository. A repository
would be closed when a developer is satisfied that a collection of staged components is ready to be
certified by a manager or a quality assurance resource. In this setting, it is possible to define email
addresses and roles that should be notified of a staging repository being closed. A notification email
will be sent to all specified email addresses, as well as all users in the specified roles, informing
them that a staging repository has been closed. It is also possible to select that the creator of the
staging repository receives this notification.

Promote Repository Notification Settings
Once a closed staging repository has been certified by whomever is responsible for testing and
checking a staged release, it can then be promoted (published) or dropped (discarded). In this set-
ting, it is possible to define the email addresses and security roles that should be notified of a staging
repository being promoted. A notification email will be sent to all specified email addresses, as well
as all users in the specified roles, informing them that a staging repository has been promoted. It is
also possible to select that the creator of the staging repository receives this notification.

Drop Repository Notification Settings
In this setting, it is possible to define email addresses and roles notified when a staging repository
is being dropped. A notification email will be sent to all specified email addresses, as well as all
users in the specified roles, informing them that a staging repository has been dropped. It is also
possible to select that the creator of the staging repository receives this notification.

Close Repository Staging Rulesets
This defines the rulesets applied to a staging repository before it can be closed. If the staging
repository does not pass the rules defined in the specified rulesets, you will be unable to close it.
For more information about rulesets, see Section 11.5.

Promote Repository Staging Rulesets
This defines the rulesets applied to a staging repository on promotion. If the staging repository does

Repository Management with Nexus 243 /440

not pass the rules defined in the specified rulesets, the promotion will fail with an error message
supplied by the failing rule. For more information about rulesets, see Section 11.5.

11.2.3 Configuring Build Promotion Profiles

A build promotion profile is used when you need to add an additional step between initial staging and
final release. To add a new Build Promotion profile, open the Staging Profiles link from the main menu
and click on Add. .. to display the drop-down menu shown in Figure 11.6. Select Build Promotion Profile
from this drop-down to create a new build promotion profile.

Welcome Staging Profiles %

% Refresh () Add...~ (@) Delete A Move Up ¥ Move Down () Save Order

Name Mode Repo Target Release Re... Target Groups

EarlyAccessBeta Group Public Repositories
ReleaseTrainExample Deploy and Ul Upload Simpligility Releases Public Repositories

InternalSales Group Public Repositories

YWTTact Mardsa and L ndaad AR avan Ralase o Cuihlic R anee tarioe

Closed Beta

Prafile ID 12f3a187d4c43ald

Prafile Name L2
Staging Mode L2
Template Maven2 (group) —

CLM Application Id

€

Cantent Type !
Target Groups Available Groups
ﬂ Closed Beta Group ﬂ Approved Artifacts Only
4 =] NuGet Al
4 ﬂ Public Repositories
Save Reset

Figure 11.6: Multilevel Staging and Build Promotion

After creating a new build promotion profile, you will see the form shown in Figure 11.7. This form
contains the following configuration fields:

Repository Management with Nexus 244 /440

Profile Name
The name for the build promotion profile displayed in the promotion dialog and associated with

repositories created from this promotion profile.

Template
The template for repositories generated by this build promotion profile. The default value for this

field is Maven2 (group).

Target Groups
The Target Groups field is the most important configuration field for a build promotion profile, as
it controls the group through which promoted components are made available. Components can be

made available through one or more groups.

Welcome Repositories Staging Profiles *

3 Refresh (L) Add...» (@) Delete A Move Up % Move Down () Save Order

Marne Mode Repo Target Release Repository Target Groups
Staged QA Rel... Deploy and Ul Upload All [(Maven2) Releases QA Testing Group
Closed Beta Group Closed Beta Group
Closed Beta
Profile Name Closed Beta -
Staging Mode L=
Template Maven2 (group) b o
Content Type (%7
Target Groups Available Groups
=] Closed Beta Group =] Public Repositories
4 ﬂ QA Testing Group
i &
i3
|
Save Reset

Figure 11.7: Configuring a Build Promotion Profile

Repository Management with Nexus 245/ 440

11.2.4 Staging Related Security Setup

Staging Suite is controlled by three roles:

» Staging: Deployer
 Staging: Promoter

 Staging: Repositories

These roles are available as general admin roles that apply to all staging profiles with the respective
access. When you create a new staging profile, the repository manager will create new roles that grant
permissions specific to that staging profile. If you created the staging profile named Test, the repository
manager created the three new and profile-specific roles:

Staging: Repositories (Test)
This role grants a user read and view access to the staging repositories created by the Test staging
profile.

Staging: Deployer (Test)
This role grants all of the privileges from the Staging: Repositories role and, in addition, grants the
user permission to deploy components, close and drop any staging repository created by the 7est
staging profile.

Staging: Promoter (Test)
This role grants the user to right to promote staging repositories created by the 7est staging profile.

To perform a staged deployment, the user deploying the component must have the Staging: Deployer
(admin) role or the Staging: Deployer role for a specific staging profile.

To configure the deployment user with the appropriate staging role, click on Users under the Security
menu in the Nexus menu. Once you see the Users panel, click on the deployment user to edit this user’s
roles. Click on the Add button in the Role Management section of the Config tab visible in Figure 11.8
for the user to be able to add new roles to the user.

Repository Management with Nexus 246 /440

Users *
S, Refresh () Add... » (@) Delete [All Configured Users = e
User ID Realm First Name . Last Wame Email Raoles
admin default Administrator changeme(@yourcompany Com MNexu. ..
deployment default Deployment User changeme1@yourcompany.com Repo:...
ANCNYMoUS default Mexus Ancnymous User changeme2@yourcompany.com UL U
deployment
Config User Token Role Tree Privilege Trace
User ID (7]
First Name Deployment @
Last Name User (7]
Email changemel@yourcompany.com (*]
Status Active ¥ @
Role Management Add

] Mexus Deployment Role
] Repo: All Repositories (Full Control)
[Staging: Deployer (admin)

Figure 11.8: Adding a Role to a User

Use the Filter section with the keyword Staging and press the Apply Filter button to see all available
staging-related roles as displayed in Figure 11.8.

Repository Management with Nexus

247/ 440

Add Roles
Filter: | Staging Selected Only

[[] Name .

[[] £ Staging: Deployer {admin)
[[] £ Staging: Deployer (Test)
[[] 3 staging: Promater {admin)
[[] £7 staging: Promeater (Test)
[[] £ Staging: Repositories {admin)
[[] £ Staging: Repositories (Test)
[[] =3 U Staging Bundle Upload
[F] £3 u: Staging Profiles

| O & e
|:| [ZJ Ul: Staging Repository Owner {admin)
[£ Ui Staging Rulesets
[F] Z3 U Staging Upload

Staging Repositories

Page[1 lof1| b bl | @

Apply Filter Reset Filter

Description

Role that gives access to stage to any profile (as well as close and drop the staged rep...
Role that gives access to stage to the Test profile (as well as close and drop the staged. ..
Role that gives full stage access to any profile (as well as close, drop and promote the s...
Reole that gives full stage access to the Test profile (as well as close, drop and promote ...
Role that gives read and view access to all repositories created by all staging profiles.
Role that gives read and view access to all repositories created by the Test staging prof...
Gives access to the Staging Bundle Upload screen in Mexus U|

Gives access to the Staging Profiles screen in Nexus Ul

Gives access to the Staging Repositeries screen in Nexus Ul

Gives full access (close, promote and drop) to staging repositories created by the user
Gives access to the Staging Rulesets screen in Nexus Ul

Gives access to the Staging Uplcad screen in Nexus U

Displaying roles 1 - 12 of 12

oK || cancel

Figure 11.9: Available Roles for Staging with a Test Staging Profile

You should see the "Staging: Deployer (admin)" role listed as well as the Test staging profile-specific
role, the promoter and repositories ones for admin and Test and a few staging user interface related roles.
These roles are required if interaction with the staging suite in the user interface is desired and allow you
to control the details about this access. If you need to add a specific permission to activate a single Staging
Profile, you would select that specific role.

Once the deployment user has the "Staging: Deployer (admin)" role, you can then use this user to deploy
to the staging URL and trigger any staging profile. Without this permission, the deployment user would
not be able to publish a staged component.

In a similar fashion, you can assign the promoter role to users.

In addition to the roles created a number of specific privileges is available to further customize the access

to the staging suite:

Staging Profiles

Allows control of create, read, delete and update operations on staging profiles.

Repository Management with Nexus 248 /440

Staging Repository: test-001
There are separate privileges for each staging repository allowing create, read, update and delete
operations are generated automatically.

Staging: All Profiles, Owner All Profiles and Profile xyz
These staging profile specific-privileges can be granted for drop, promote, read and finish opera-
tions.

Staging: Rule Set and Staging: Rule Types
Control access to staging rules and rule types.

Staging: Upload
Controls access to the manual staging upload user interface.

Staging: Repositories, Promote Repository, Profile Ordering, Close Staging and others
A number of application user interface-specific privileges allow fine-grained control over access in
the user interface.

11.2.5 Using Repository Targets for Staging

The Staging Suite intercepts deployments using Repository Targets as documented in Section 6.14 when
using implicit matching as a profile selection strategy, based on the components path in the repository.

For example, if you wanted to intercept all deployments to the com.sonatype.sample groupld, you would
create a repository target with a pattern with a regular expression of ~/com/sonatype/sample/ . *
and use that repository target in your Staging Profile configuration.

11.3 Configuring Your Project for Deployment

Once the repository manager is configured to receive components in the staging suite as documented in
Section 11.2, you will have to update your project build configuration to deploy to the staging suite.

The preferred way to do this is to take advantage of the features provided by the Nexus Staging Maven
plugin or the Nexus Staging Ant tasks as documented in Section 11.3.1 and Section 11.3.2.

If you need to continue to use the Maven Deploy plugin, you can read about using it with the staging suite
in Section 11.3.3.

Repository Management with Nexus 249/ 440

With all tools you can use the manual upload of your components documented in Section 11.3.5.

11.3.1 Deployment with the Nexus Staging Maven Plugin

The Nexus Staging Maven plugin is a specific and more powerful replacement for the Maven Deploy
plugin with a number of features specifically geared towards usage with the staging suite. The simplest
usage can be configured by adding it to the project build plugins section as an extension:

<build>
<plugins>
<plugin>
<groupId>org.sonatype.plugins</groupId>
<artifactId>nexus-staging-maven-plugin</artifactId>
<version>1.6.6</version>
<extensions>true</extensions>
<configuration>
<serverId>nexus</serverId>
<nexusUrl>http://localhost:8081/nexus/</nexusUrl>
</configuration>
</plugin>

Note

It is important to use a version of the plugin that is compatible with your Nexus Repository Manager
server. Version 1.2 is compatible with Nexus Repository Manager 2.3, Version 1.4.4 is compatible with
Nexus Repository Manager 2.4, Version 1.4.8 is compatible with Nexus Repository Manager 2.5 and
2.6. 1.5 and 1.6.x can be used for Nexus Repository Manager 2.7 to 2.10. The latest version of the
plugin available is always compatible with the latest available version of Nexus Repository Manager. Try
to use the newest possible plugin version to take advantage of any available improvements.

Following Maven best practices, the version should be pulled out into a pluginManagement section
in a company POM or parent POM.

This configuration works only in Maven 3 and automatically replaces the deploy goal invocation of the
Maven Deploy plugin in the deploy Maven life cycle phase with the deploy goal invocation of the Nexus
staging Maven plugin.

The minimal required configuration parameters for the Nexus Staging Maven plugin are:

http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22nexus-staging-maven-plugin%22

Repository Management with Nexus 250/ 440

serverld
The id of the server element in settings.xml from which the user credentials for accessing
the repository manager should be retrieved.

nexusUrl
The base URL at which the repository managerto be used for staging is available.

With this configuration the Nexus Staging Maven plugin will stage the components locally and connect to
the repository manager. It will try to determine the appropriate staging profile by matching the component
path with any repository targets configured with staging profiles with an activated implicit profile selection
strategy. If an appropriate staging profile is found, a staging repository is created on the fly and the
components are deployed into it. If no profile is found, the upload will fail.

To successfully deploy to your repository manager, you will need to update your Maven Settings with
the credentials for the deployment user. These credentials are stored in the Maven Settings file in
~/.m2/settings.xml.

To add these credentials, add the following element to the servers element in your ~/.m2/settings.xml file
as shown in Listing deployment credentials in Maven Settings.

Listing deployment credentials in Maven Settings

<settings>
<servers>

<server>
<id>nexus</id>
<username>deployment</username>
<password>deployment123</password>
</server>
</servers>

</settings>

Note that the server identifier listed in Listing deployment credentials in Maven Settings should match the
serverld parameter you are passing to the Nexus Staging Maven plugin and in the example contains the
default password for the deployment user - deployment123. You should change this password to match
the deployment password for your repository manager.

If more control is desired over when the plugins deploy goal is activated or if Maven 2 is used, you have
to explicitly deactivate the Maven Deploy plugin and replace the Maven Deploy plugin invocation with
the Nexus Staging Maven plugin like visible in Usage of Nexus Staging Maven Plugin for Maven 2.

Repository Management with Nexus 251 /440

Usage of Nexus Staging Maven Plugin for Maven 2

<build>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-deploy-plugin</artifactId>
<configuration>
<skip>true</skip>
</configuration>
</plugin>
<plugin>
<groupld>org.sonatype.plugins</groupId>
<artifactId>nexus-staging-maven-plugin</artifactId>
<executions>
<execution>
<id>default-deploy</id>
<phase>deploy</phase>
<goals>
<goal>deploy</goal>
</goals>
</execution>
</executions>
<configuration>
<serverId>nexus</serverId>
<nexusUrl>http://localhost:8081/nexus/</nexusUrl>
<!-- explicit matching using the staging profile id -->
<stagingProfileId>129341e09f2ee275</stagingProfileId>
</configuration>
</plugin>

The implicit matching relies on the setup of repository targets as well as the correct order of staging
profiles and is therefore an error prone approach when many staging profiles are in use.

The preferred way to work in this sceneario is to change the profile selection strategy on all staging
profiles to explicit only and pass the staging profile ID to the Nexus Staging Maven plugin using the
stagingProfileId configuration parameter as documented above. A full example pom.xml for
deployment of snapshot as well as release builds with the Nexus Staging Maven plugin using explicit
matching for the staging profile and locally staged builds and atomic uploads is available in Full example
pom.xml for Nexus Staging Maven Plugin usage.

Full example pom.xml for Nexus Staging Maven Plugin usage

<project>
<modelVersion>4.0.0</modelVersion>

Repository Management with Nexus 252 /440

<groupId>com.sonatype.training.nxs301</groupId>
<artifactId>explicit-staging-example</artifactId>
<version>1.0.0</version>

<distributionManagement>
<snapshotRepository>
<id>nexus-snapshots</id>
<url>http://localhost:8081/nexus/content/repositories/snapshots</url>
</snapshotRepository>

</distributionManagement>

<pbuild>
<plugins>
<plugin>
<groupld>org.sonatype.plugins</groupIld>
<artifactId>nexus-staging-maven-plugin</artifactId>
<version>1.6.3</version>
<extensions>true</extensions>
<configuration>
<serverId>nexus-releases</serverId>
<nexusUrl>http://localhost:8081/nexus/</nexusUrl>
<!—— update this to the correct id! -->
<stagingProfileId>1296f79%9efe04a4d0</stagingProfileId>
</configuration>
</plugin>
</plugins>
</build>
</project>

In order to deploy project components with the above setup you would invoke a build with mvn clean
deploy.

The build will locally stage the components for deployment in target /nexus-staging on the con-
sole and create a closed staging repository holding the build components. This execution of the deploy
goal of the Nexus Staging Maven plugin performs the following actions:

* Components are staged locally.

* A staging profile is selected either implicitly or explicitly.

* A staging repository is either created on the fly, if needed, or just selected.
* An atomic upload to the staging repository is performed.

* The staging repository is closed (or dropped if upload fails).

Repository Management with Nexus 253 /440

The log of a successful deployment would look similar to this:

[INFO] —--- nexus-staging-maven-plugin:1.1l.l:deploy (injected-nexus-deploy) <>
@ staging-example -—-—

[INFO] Using server credentials with ID="nexus-releases" from Maven <
settings.

[INFO] Preparing staging against Nexus on URL http://localhost:8081/nexus/

[INFO] * Remote Nexus reported itself as version 2.2.1 and edition " <«
Professional"

[INFO] * Using staging profile ID "12a1656609231352" (matched by Nexus) .

[INFO] Staging locally (stagingDirectory=

"/Users/manfred/dev/explicit-staging—example/target/nexus-staging/12 <

al656609231352") ...

Uploading: file: ... explicit-staging-example-1.0.0.jar

Uploaded: file: ... explicit-staging-example-1.0.0.Jjar (4 KB at 1051.1 KB/ ¢«
sec)

Uploading: file: ... explicit-staging-example-1.0.0.pom

Uploaded: file: ... explicit-staging-example-1.0.0.pom (4 KB at 656.2 KB/ ¢
sec)

Downloading: file: ...maven-metadata.xml

Uploading: file: ...maven-metadata.xml

Uploaded: file: ... maven-metadata.xml (322 B at 157.2 KB/sec)

[INFO] Staging remotely...

[INFO] Uploading locally staged directory: 12al656609231352

[INFO] Performing staging against Nexus on URL http://localhost:8081/nexus <
/

[INFO] * Remote Nexus reported itself as version 2.2.1 and edition " ¢
Professional"

[INFO] =« Created staging repository with ID "test-002",

applied tags: {javaVersion=1.6.0_37, localUsername=manfred}

[INFO] * Uploading locally staged components to:

http://localhost:8081/nexus/service/local/staging/deployByRepositoryId/ <
test-002

[INFO] = Upload of locally staged components done.

[INFO] =« Closing staging repository with ID "test-002".

[INFO] Finished staging against Nexus with success.

Failures are accompanied by error reports that reveal further details:

[ERROR] Error while trying to close staging repository with ID "test-003".
[ERROR]
[ERROR] Nexus Staging Rules Failure Report

[ERROR]

[ERROR]

[ERROR] Repository "Test-003 (u:admin, a:127.0.0.1)" (id=n/a) failures
[ERROR] Rule "RepositoryWritePolicy" failures

[ERROR] * Artifact updating: Repository =’releases:Releases’ does

not allow updating

Repository Management with Nexus 254 /440

artifact=’/com/sonatype/training/nexus/explicit-staging-example/t1.0.0/ ¢
staging-example-1.0.0.jar’

[ERROR] + Artifact updating: Repository ='releases:Releases’ does

not allow updating

artifact=’/com/sonatype/training/nexus/explicit-staging-example/1.0.0/ ¢«
staging-example-1.0.0.pom’

[ERROR]

[ERROR]

If the configuration parameter skipStagingRepositoryClose setto true is passed to the plugin
execution, the remote staging repository will not be closed.

Instead of repository manager creating a staging repository based on the implicit or explicit staging profile
selection, you can explicitly configure the staging repository to use by providing the staging repository
name as value of the stagingRepositoryId configuration property via the plugin configuration or
command line invocation.

The identifier of a staging repository can be determined by looking at the name column in the list of
staging repositories. The name column used the capitalized ID and adds the username and address the
staging was deployed from in brackets. For example a name could be Test-003 (u:admin, a:
127.0.0.1). The ID of this staging repository is test-003.

Together with skipping the closing of the repository using skipStagingRepositoryClose, it is
possible to get multiple builds to deploy to the same staging repository and, therefore, have a number
of components go through the staging workflow together. An alternative to this approach would be to
create an aggregating project that assembles all components together, e.g., in an assembly and then use
this project for staging.

Finally to override all staging, you can define the full repository URL to deploy to with the deployUrl
configuration parameter. For example, see below:

http://localhost:8081/nexus/content/repositories/releases/

This would cause any staging to be skipped and a straight upload of the components to the repository to
occur.

As part of the configuration section for the plugin you can define tags with arbitrary key and value names.
For example, you could create a tag with key localUsername and a value of the current user picked up
from the USER environment variable:

<configuration>

Repository Management with Nexus 255/ 440

<tags>
<localUsername>${env.USER}</localUsername>
<javaVersion>${java.version}</javaVersion>
</tags>

Once components are released these tags are transformed into attributes stored along the components in
the release repository and can be accessed via the REST interface and, therefore, any plugin and user
interface integration.

In addition to the above documented configuration options that determine the behaviour of the Nexus
Staging Maven plugin, further configuration can be provided with the following parameters:

altStagingDirectory
Defaulting to target/nexus-staging you can set the property to set a different folder for the local
staging.

autoReleaseAfterClose
If you set this flag to true, the staging repository will be closed and, following a successful
validation of all staging rules including potential Nexus 1Q Server-based validation, released. By
default this property is set to false. Changing it to true can be a useful setup for continuous
integration server based releases.

description
Allows you to provide a description for the staging repository action (like close or drop) carried
out as part of the plugin execution. The description will then be used in any notification just like a
description provided in the user interface.

keepStagingRepositoryOnFailure
Setting this flag to true will cause the plugin to skip any clean up operations like dropping a staging
repository for failed uploads, by default these clean up operations occur.

keepStagingRepositoryOnCloseRuleFailure
With the default setting of false, the Nexus Staging Maven plugin will drop the created staging
repository if any staging rule violation occurs. If this flag is set to t rue, it will not drop the staging
repository. This allows you to inspect the deployed components in order to figure out why a rule
failed causing the staging failure.

skipStagingRepositoryClose
Set this to t rue to turn off the automatic closing of a staging repository after deployment.

skipNexusStagingDeployMojo
Set to false by default, this flag will cause to skip any execution of the deploy goal of the plugin
when set to true similar to maven.deploy.skip. In multi-module builds the staging of all components

Repository Management with Nexus 256 / 440

is performed in the last module based on the reactor order. If this property is set to true in the
module, all staging will be skipped. You have to ensure that this property evaluates as t rue in the
last module of the reactor. If necessary, you can add a dummy module.

skipStaging
Set to false by default this flag will cause to skip any execution of the plugin when set to true.

skipRemoteStaging
If this flag is set to t rue any step related to remote staging will be skipped and only local staging
will be performed. The default setting is false.

skipLocalStaging
When t rue, bypass all staging specific features. Remote deploys happen inline at deploy phase of
each module, not at build end. The deployment repository is "sourced" from pom.xml <distribu-
tionManagement>. Which distribution repository is used depends on the project having a release
or snapshot version. Essentially this option makes the staging plugin execution act like the default
maven-deploy-plugin. The default setting is false.

stagingProgressTimeoutMinutes
Defaulting to 5 minutes, this configuration allows you to set the timeout for staging operations.
Changes are most often required for complex staging operations involving custom staging rules or
Nexus IQ Server integration.

stagingProgressPauseDurationSeconds
The default of 3 seconds can be changed if larger pauses between progress polls for staging opera-
tions are desired.

With skipRemoteStaging set to t rue, only the local staging happens. This local staging can then
be picked up for the remote staging and closing by running the deploy-staged goal of the plugin
explicitly like this

mvn nexus—-staging:deploy-staged

Besides the default deploy goal the Nexus Staging Maven plugin supports a number of additional goals.
By configuring executions of the goals as part of your POM or manually invoking them further automation
of a staged release process can be achieved.

deploy-staged
Perform full staging deployment workflow for a locally staged project, e.g., with the components
intarget/nexus—-staging.

deploy-staged-repository
Perform an upload of a repository from the local filesystem to a staging repository.

Repository Management with Nexus 257 /440

close
Close the staging repository for current context.

drop
Drop the staging repository for current context.

release
Release the staging repository for current context.

promote
Promote the staging repository for the current context.

Closing, dropping, and releasing the staging repository using the goals relies on content of a local staging
folder .

Promoting additionally needs the build promotion profile name passed in via the buildPromotionPr
ofileId configuration parameter.

The deploy—-staged-repository goal can be used to stage a repository. Typically, a local reposi-
tory is created with an invocation of the deploy similar to

mvn deploy -DaltDeploymentRepository=local::default::file://path

To deploy this file system repository with the goal, you have to provide the path to this repository with
the repositoryDirectory parameter as well as nexusUrl, serverld and stagingProfileld. Optionally you can
configure the repository to stage into with stagingRepositoryld. This aggregated command can then be
run outside any specific Maven project.

While the above goals need the context of a project with configuration for the Nexus Staging Plugin in the
POM file, it is possible to execute staging repository-related tasks without a project as well. The Nexus
Staging Maven plugin offers remote-control goals to control staging:

rc-close
Close a specified staging repository.

rc-drop
Drop a specified staging repository.

rc-release
Release a specified staging repository.

rc-promote
Promote a specified staging repository.

Repository Management with Nexus 258 /440

re-list
List all staging repositories.

When invoking these goals outside a project context, you need to have the Nexus Staging Maven plugin
groupld specified as a pluginGroup in your settings.xml:

<pluginGroups>
<pluginGroup>org.sonatype.plugins</pluginGroup>
</pluginGroups>

In addition, you need to specify all parameters on the command line as properties passed in via —-Dkey=
value.

At a minimum the required parameters serverId and nexusUrl have to be specified:

mvn nexus-staging:rc-close -DserverId=nexus -DnexusUrl=http://localhost <
:8081/nexus

Depending on the goal you will have to configure the staging repositories you want to close, drop or
release with

-DstagingRepositoryId=repo-001, repo-002

and you can also supply a description like this

-DstagingDescription="Dropping since QA of issue 123 failed"

For promoting, you need to add the required parameter that specifies the build promotion profile identifier:

-DbuildPromotionProfileId=12a25eabf8c8b3f2

A successful remote control drop would be logged in the command line similar to this

—-— nexus-staging-maven-plugin:1.2:rc-drop (default-cli) @ standalone-pom —--—
[INFO] Connecting to Nexus...
[INFO] Using server credentials with ID="nexus-releases" from Maven <+

settings.
[INFO] RC-Dropping staging repository with IDs=[test-003]
[INFO] <

Repository Management with Nexus 259/ 440

[INFO] BUILD SUCCESS
[INFO] <

An example usage of the rc—11ist goal with output is

Smvn nexus-staging:rc-list -DnexusUrl=http://localhost:8081/nexus
—-DserverId=nexus

[INFO] —--- nexus-staging-maven-plugin:1.5.1:rc-1list (default-cli) @ <«
standalone-pom ——-—
[INFO] Connecting to Nexus...
[INFO] Using server credentials with ID="nexus" from Maven settings.
[INFO] Getting list of available staging repositories...
]
]

[INFO
[INFO] ID State Description
[INFO] example_release_profile-1000 OPEN Implicitly created (auto
staging) .
Warning

The Nexus Maven plugin in versions earlier than 2.1.0 had goals to work with staging reposi-
tories. These goals have been deprecated in favour of the remote control goals of the Nexus
Staging Maven plugin.

11.3.2 Deployment with the Nexus Staging Ant Tasks

The Nexus Staging Ant tasks provide equivalent features to the Nexus Staging Maven plugin for Apache
Ant users covering all use cases for interacting with the staging suite.

Historically Ant builds typically have components that are required for the build, statically managed in
the version control system or even outside the project workspace altogether. More modern Ant builds
use Apache Ivy or Eclipse Aether for resolving dependencies dynamically as well as deployment build
outputs to a repository manager. Examples projects setups using Ivy as well as Aether can be found in the

documentation examples project. This project includes examples for integration with the Nexus Staging
Ant tasks.

https://github.com/sonatype/nexus-book-examples

Repository Management with Nexus 260/ 440

To use the Ant tasks in your Ant build file, download the complete JAR with the included dependencies
from the Central Repository. Simply search for nexus-staging-ant-tasks and download the JAR file with
the uber classifier e.g., nexus-staging—-ant-tasks—-1.6-2-uber. jar.

After downloading, put the JAR file somewhere in your project or in your system so you can add it to the
classpath in your build file with a task definition. In the following example, the JAR file is placed in a
tasks folder within the project.

<taskdef uri="antlib:org.sonatype.nexus.ant.staging"
resource="org/sonatype/nexus/ant/staging/antlib.xml">
<classpath>
<fileset dir="tasks" includes="nexus-staging-ant-tasks-xuber.jar" />
</classpath>
</taskdef>

To enable the tasks in your build file using a shortcut for the namespace, e.g., staging, you have to add
it to the project node:

<project xmlns:staging="antlib:org.sonatype.nexus.ant.staging" ...>

The deployment-related information for your project is captured in a nexusStagingInfo section in
your build file that contains all the necessary configuration.

<staging:nexusStagingInfo id="target-nexus"
stagingDirectory="target/local-staging">
<staging:projectInfo groupId="org.sonatype.nexus.ant"
artifactId="nexus-staging-ant-tasks"
version="1.0" />
<staging:connectionInfo
baseUrl="http://localhost:8081/nexus">
<staging:authentication
username="deployment"
password="deploymentl123" />
</staging:connectionInfo>
</staging:nexusStagingInfo>

nexusStagingInfo:id
The identifier that allows you to reference the staging information in the Ant build file.
stagingInfo:stagingDirectory
The local staging directory, a place where local staging will happen. Ensure that this directory is
cleaned up by a clean task or alike, if any.

projectInfo
The project information targetting a staging profile. This can be done explicitly with the stagin

Repository Management with Nexus 261 /440

gProfileId or implicitly with groupld, artifactld and version. stagingRepositoryId can
also be part of projectInfo identifying a staging repository for interaction.

connectionInfo:baseUrl
The base URL of the repository manager you want to deploy to and interact with.

If necessary the connectionInfo can have a nested proxy section

<staging:proxy
host="proxy.mycorp.com"
port="8080">
<staging:authentication
username="proxyUser"
password="proxySecret" />
</staging:proxy>

With the above setup you are ready to add a deploy target to your build file that stages the components
locally as well as remotely and closes the staging repository.

<target name="deploy" description="Deploy: Local and Remote Staging">
<staging:stageLocally>
<staging:nexusStagingInfo
refid="target-nexus" />
<fileset dir="target/local-repo"
includes="**/*.x" />
</staging:stageLocally>

<staging:stageRemotely>
<staging:nexusStagingInfo
refid="target-nexus" />
</staging:stageRemotely>
</target>

The folder target/local-repo has to contain the components in a directory structure resembling
the Maven repository format using the groupId, artifactId and version coordinates of the com-
ponent mapped to directory names. It will be merged into the target release repository, when the staging
repository is released. An example on how to create such a structure in Ant can be found in the staging
example for Apache Ivy and Eclipse Aether in the documentation examples project.

Similarily, you can create a target that releases the staged components by adding the releaseStagin
gRepository task to the end of the target:

<staging:releaseStagingRepository>
<staging:nexusStagingInfo
refid="target-nexus" />

https://github.com/sonatype/nexus-book-examples/

Repository Management with Nexus 262 /440

</staging:releaseStagingRepository>

The stageLocally task takes a fileset as configuration. The stageRemotely task has additional configuration
options.

keepStagingRepositoryOnFailure
Set to true this causes the remote staging repository to be kept rather than deleted in case of a
failed upload. Default setting is false

skipStagingRepositoryClose
By default a staging repository is automatically closed, setting this parameter to t rue will cause
the staging repository to remain open.

In addition to the tasks for local and remote staging, the Nexus Staging Ant tasks include tasks for closing,
dropping, releasing and promoting a staging repository:

* closeStagingRepository
* dropStagingRepository
* releaseStagingRepository

* promoteStagingRepository

All these tasks take the context information from the local staging directory or from the optional parameter
stagingRepositoryId. The task to promote a repository has the additional, mandatory attribute
buildPromotionProfileId to specify the build promotion profile to promote.

The timing of the task operation can be affected by the following configuration parameters:

stagingProgressTimeoutMinutes
Defaulting to 5 minutes, this configuration allows you to set the timeout for staging operations.
Changes are most often required for complex staging operations involving custom staging rules or
Nexus IQ Server integration.

stagingProgressPauseDurationSeconds
The default of 3 seconds can be changed if larger pauses between progress polls for staging opera-
tions are desired.

Repository Management with Nexus 263 /440

11.3.3 Deployment with the Maven Deploy Plugin

When using the Maven Deploy plugin with the staging suite, you rely on implicit matching of the com-
ponents against a staging profile based on a repository target definition.

To deploy a staged release, a developer needs to deploy to the staging URL. To configure a project to
deploy to the staging URL, add the distributionManagement element to your project’s POM.

Listing the Staging URL in distributionManagement

<project xmlns="http://maven.apache.org/POM/4.0.0"

<distributionManagement>
<repository>
<id>nexus</id>
<name>Nexus Staging Repo</name>
<url>http://localhost:8081/nexus/service/local/staging/deploy/maven2 <
/</url>
</repository>
</distributionManagement>

</project>

This configuration element, distributionManagement, defines the repository to which our de-

ployment will be made. It references the staging suite’s URL: http://localhost:808 1/nexus/service/local/-
staging/deploy/maven2

This URL acts as a virtual repository to be published to. If a component being published matches one

of the repository targets in a staging profile, that staging profile is activated and a temporary staging
repository is created.

Once the sample project’s distributionManagement has been set to point at the staging URL and

your deployment credentials are updated in your ~/.m2/settings.xml file, you can deploy to the staging
URL. To do this, run mvn deploy:

$ mvn deploy
[INFO] Scanning for projects...
[INFO] <+

[INFO] Building staging-test
[INFO] task—-segment: [deploy]
[INFO] <«

http://localhost:8081/nexus/service/local/staging/deploy/maven2
http://localhost:8081/nexus/service/local/staging/deploy/maven2

Repository Management with Nexus 264 /440

[INFO [resources:resources]

[INFO] Using default encoding to copy filtered resources.
[INFO [compiler:compile]

[INFO] Nothing to compile - all classes are up to date

]
1
]
1
[INFO] [resources:testResources]
1
1
1
]

[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]

[INFO] Nothing to compile - all classes are up to date
[INFO [surefire:test]

[INFO] Surefire report directory: /private/tmp/staging-test/target/ ¢
surefire-reports

[INFO] [jar:jar]

[INFO] [install:install]

[INFO] Installing /private/tmp/staging-test/target/staging-test-1.0.jar to ¢
\

~/.m2/repository/com/sonatype/sample/staging-test/1.0/staging-test-1.0.jar

[INFO] [deploy:deploy]

altDeploymentRepository = null

Uploading: http://localhost:8081/nexus/service/local/staging/deploy/maven2 <
/\

com/sonatype/sample/staging-test/1.0/staging-test-1.0. jar

2K uploaded

[INFO] Uploading project information for staging-test 1.0

[INFO] Retrieving previous metadata from nexus

[INFO] repository metadata for: ’component com.sonatype.sample:staging— <
test’

could not be found on repository: nexus, so will be created

[INFO] Uploading repository metadata for: ’component com.sonatype.sample: <
staging-test’

[INFO] —

[INFO] BUILD SUCCESSFUL

If the staging suite is configured correctly, any deployment to the staging URL matching a repository
target configured for a staging profile should be intercepted by the staging suite and placed in a temporary
staging repository. Deployment with the Maven Deploy plugin will not automatically close the staging
repository. Closing the staging repository has to be done via the user interface or the Nexus Staging
Maven plugin. Once this repository has been closed, it will be made available in the target group you
selected when you configured the staging profile.

Repository Management with Nexus 265 /440

11.3.4 Deployment and Staging with Gradle

The Gradle build system can be used to deploy components with the Gradle Maven plugin. The Nexus
Staging Ant tasks can be used in Gradle allowing full integration of the staging suite features in a Gradle
build.

An example project showcasing this integration is available in the documentation examples project.

11.3.5 Manually Uploading a Staged Deployment

You can also upload a staged deployment via the user interface. To upload a staged deployment, select
Staging Upload from the mainmenu. Clicking Staging Upload will show the panel shown in Figure 11.10.

Staging Upload =
Select Staging Upload Mode

Upload Mode: Select... v |

Artifact(s) with a POM: GAV will be defined from a POM file.
Artifact({s) with GAV: GAV needs to be manually defined.
Artifact Bundle: A bundle file produced by Maven Repository Plugin, which should contain the POM.

Select Artifact(s) for Upload

Select Artifact{s) to Upload...
Filename:
Classifier: L2
Extension: L2
Artifacts Remove
Remove All
Description:

>

Upload Artifact(s) | Reset

Figure 11.10: Manually Uploading a Staged Deployment

https://github.com/sonatype/nexus-book-examples

Repository Management with Nexus 266 /440

To upload a component, click on Select Artifact(s) for Upload... and select an components from the
filesystem to upload. Once you have selected a component, you can modify the classifier and the extension
before clicking on the Add Artifact button. Repeat this process to upload mutltiple components for the
same Group, Artifact and Version (GAV) coordinates like a JAR, the POM and maybe a sources and
javadoc JAR in addition. Once you have added all the components, you can then configure the source of
the Group, Artifact, Version (GAV) parameters.

If the component you are uploading is a JAR file that was created by Maven, it will already have POM
information embedded in it, but if you are uploading a JAR from a vendor you will likely need to set the
Group Identifier, Artifact Identifier, and Version manually. To do this, select GAV Parameters from the
GAV Definition drop-down at the top of this form. Selecting GAV Parameters will expose a set of form
fields that will let you set the Group, Artifact, Version, and Packaging of the components being uploaded.
If you would prefer to set the Group, Artifact, and Version identifiers from a POM file that was associated
with the uploaded component, select From POM in the GAV Definition drop-down. Selecting From POM
in this drop-down will expose a button labeled Select POM to Upload. Once a POM file has been selected
for upload, the name of the POM file will be displayed in the form field below this button.

The Staging Upload panel supports multiple components with the same Group, Artifact, and Version
identifiers. For example, if you need to upload multiple components with different classifiers, you may
do so by clicking on Select Artifact(s) for Upload and Add Artifact multiple times. This interface also
accepts an Artifact Bundle which is a JAR that contains more than one component, which is documented
in more detail in Section 11.7.

Once a staging component upload has been completely configured, click on Upload Artifact(s) button to
begin the upload process. The repository manager will upload the components to the Staging URL which
will trigger any staging profiles that are activated by the upload by explicity matching using the repository
targets configured with the staging profiles. If a staging profile is activated, a new staging repository will
be created and can be managed using the procedures outlined in Section 11.4.

11.4 Managing Staging Repositories

With a staging profile configured and a deployment completed as outlined in Section 11.2 and Sec-
tion 11.3, you will have an automatically generated staging repository. A list of all staging repositories
can be accessed by selecting the Staging Repositories item in the Build Promotion menu and is displayed
in Figure 11.11.

Repository Management with Nexus 267 /440

Welcome Staging Repositorie '*
2 Refresh | [o Promote [z Release | & Drop Filter by profile v
D Repository - Profile Status Updated Description
nxs 301-001 NXS301 closed 201 3-Mar-27 10010014 Implicitly created (aut

Figure 11.11: Staging Repositories List Panel

Actions for the selected staging repository/ies in the list include options to Close, Promote, Release or
Drop. The Refresh button can be used to force a reload of the list of repositories. The Filter by profile
drop-down allows you to select one or multiple staging profiles from which the repositories in the list
were created. The list of repositories itself displays a number of columns with details for each repository.
Further columns can be added by pressing on the drop-down triangle beside the currently selected column.
Sorting by a single column in Ascending or Descending order can be set from the same drop-down as the
column addition.

Note

When triggering a transition for a staging repository from e.g., the open state to a the closed state,
a background task performs all the necessary operations. Since these are potentially longer running
tasks, the user interface is not immediately updated. You are required to press Refresh to get the latest
state of all repositories.

By default the following columns are displayed:

Checkbox
A checkbox to allow operations on multiple repositories.

Status Icon
An icon symbolizing the status of the staging repository.

Repository
The name of the staging repository.

Profile
The name of the staging profile, that was used to create the staging repository.

Status
Status of the repository.

Repository Management with Nexus 268 /440

Updated
Date and time of the last update.

Description
Textual description of the repository.

Additional columns are:

Release To
Target repository for the components in the staging repository after release.

Promoted To
The build promotion profile, to which a staging repository was optionally promoted to.

Owner
The username of the creator of the staging repository.

Created
Date and time of the creation of the staging repository.

User Agent
User agent string sent by the tool used for the deployment, e.g., Apache-Maven/3.0.5.

Tip
You can also access staging repositories in the list of repositories available in the Repositories panel
available via the Views/Repositories as a Nexus-managed repository.

In the following sections, you will walk through the process of managing staging repositories. Once you
have deployed a set of related components, you must close the repository moving it from an Open to a
Closed state unless the deployment tool automatically closed the staging repository.

A repository in the Closed state is added to a Repository Group and is made available for testing purposes
or other inspection and can no longer received additional components in it.

When the component examination is complete, you can either Promote, Release, or Drop the closed
repository.

If the repository is dropped, the repository is discarded and removed from the Repository Group and the
components are move to the Trash.

Repository Management with Nexus 269 /440

If the repository is promoted, it is assigned to a build promotion profile for further staging activities.

If the repository is released, its components are moved to the target repository configured in the staging
profile.

Note
A scheduled task documented in Section 6.5 can be used to clean up inactive staging repositories
automatically.

Selecting a staging repository in the list displays further details about the repository in the Summary,
Activity, and Content tabs below the list. An example for an open repository is displayed in Figure 11.12.

_» nxs301-002

Summary Activity Content

Repository nxs301-002 (NX5301)

Created Wednesday, April 10, 2013 13:48:58 PDT (GMT-0700)

Updated Wednesday, April 10, 2013 13:48:58 POT (GMT-0700) \ ﬁ
Activity & open
Owner admin (127.0.0.1)

User-Agent Apache-Mavens/3.0.5 (Java 1.7.0_17, Mac OS5 X 10.8.3)

Description
Implicitly created (auto staging). -4
Save Discard

Figure 11.12: List of Activities Performed on a Promoted Staging Repository

The Summary tab displays a number of properties of the staging repository and allows you to edit the
Description. The properties include the name of the repository, created date/time and updated date/time,
activity indicator, owner and originating IP number of the deployment as well as the user agent string sent
by the deployment. All staging operations have a default description that is used if the input field is left
blank.

The Activity tab shows all the activties that occured on a specific staging repository. An example for a

Repository Management with Nexus 270/ 440

promoted repository is displayed in Figure 11.13. The activities are separated per activity and list all
events that occurred in an acivity. Selecting an event displays further details about the event on the right
side of the tab.

o nxs301-001

Summary Activity Content

= Activities Event: All rules 5::
= open passed: Default Eﬂ.,,«?
&) Repository created Always Run
Wednesday, April 10, 2013
= close 14:07:31 POT (GMT-0700)

’5{2,: Evaluating rules: Default Abvays Run
i@" Evaluating rule: Repository Writable
'E§.? Passed: Repository Writable
’E:?'i:_:AII rules passed: Default Abvays Run
O Repesitory closed

=gy promote
’5{2,: Evaluating rules: Default Abvays Run

id nx-internalkruleset

i@" Evaluating rule: Repository Writable

'E§.? Passed: Repository Writable k
’E;?'i:_:AII rules passed: Default Abvays Run H

O Repesitory promoted to group: closed_beta-003 i

Figure 11.13: Details of an Open Staging Repository as Displayed under the List of Staging Repositories

The Content tab displays a repository browser view of the staging repository content and allows you to
filter and display the components in the tree view. Selecting a specific component triggers the display
of further panels with further information about the component, in the same manner as other repository
browser views. The tabs include Maven and Artifact information and others.

For build promotion profile an additional Members tab is shown. It displays the source repositories and
build promotion profiles from which this current build promotion profile was created.

11.4.1 Closing an Open Repository

Once you deploy a component that triggers a staging profile, staging suite will create a repository that
contains the components you deployed. A separate staging repository is created for every combination
of User ID, IP Address, and User Agent. This means that you can perform more than one deployment
to a single staging repository, as long as you perform the deployment from the same IP with the same
deployment user and the same installation of Maven.

Repository Management with Nexus 271 /440

You can perform multiple deployments to an open staging repository. Depending on the deployment tool
and your configuration, the staging repository might be automatically closed during deployment or left
open until manually closed.

Once you are ready to start testing the staging repository content, you will need to transition the repository
from the open state to the closed state. This will close the staging repository to more deployments.

To close a repository, select the open staging repository in the list and by clicking the checkbox in the
list or anywhere else in the row. For an open repository, the Close and the Drop buttons above the table
will be activated. Pressing the Close button will bring up the dialog for a staging deployer to describe
the contents of the staging repository and confirm . This description field can be used to pass essential
information to the person who needs to test a deployment.

In Figure 11.14, the description field is used to describe the release for the user who needs to certify and
promote a release.

Close Confirmation

You are about to close 1 repositary.
|_ This may take some time to complete.

Description

This should fix all the remaining issues and be ready to release
to the early adopters at least.

Confirm Cancel

Figure 11.14: Confirmation and Description Dialog for Closing a Staging Repository

Confirming this state transition will close the repository and add the repository to the repository groups
configured in the staging profile. The updated status will be visible in the list of staging repositories after
a Refresh, since the transition could take longer depending on the configured staging rules and potential
validation against Nexus IQ Server.

Repository Management with Nexus 272 /440

11.4.2 Using the Staging Repository

Once the staging repository has been closed, it will automatically be added to the repository group(s) that
are specified as target groups in the staging profile configuration.

This has the effect of making the staged components available to everyone who is referencing this group.
Developers who are referencing this repository group can now test and interact with the staged compo-
nents as if they were published to a Hosted repository.

While the components are made available in a repository group, the fact that they are held in a temporary
staging directory gives the staging user the option of promoting this set of components to a hosted repos-
itory. Alternatively, the user can drop this temporary staging repository, if there are problems discovered
during the testing and certification process for a release.

Once a staging repository is closed, you can also browse and search the repository in the staging reposi-
tories list.

To view all staging repositories, click on the Repositories item in the Views/Repositories menu and then
select Nexus Managed Repositories as shown in Figure 11.15.

Welcome Repositories %

% Refresh - & Trash...~ l Mexus Managed Repositories ~
Repository - Type Qu User Managed Repositories
closed_beta-003 (staging: gr... group o % Nexus Managed Repositories
earlyaccessbeta-004 (staging... group s 0 maven2 Mixed
nxs301-001 (staging: closed) hosted s 0 maven2 Release

Figure 11.15: Viewing Nexus Managed Repositories

This list allows you to access all Nexus Managed Repositories, just like the User Managed Repositories,
including browsing the content and accessing detailed information about the components in the repository.
In addition to staging repositories, the list included procured repositories as documented in Chapter 10.

Repository Management with Nexus 273 /440

11.4.3 Releasing a Staging Repository

When you are finished testing or certifying the contents of a staging repository, you are ready to either
release, promote, or drop the staging repository. Dropping the staging repository will delete the temporary
it from the repository manager and remove any reference to this repository from the groups with which
it was associated. Releasing the staging repository allows you to publish the contents of this temporary
repository to a hosted repository. Promoting the repository will move it to a build promotion profile.

You can release a staging repository by pressing Release, after selecting a closed staging repository from
the staging repositories list. The Release Confirmation dialog displayed in Figure 11.16 will allow you
to supply a description and configure if the staging repository should be automatically dropped after the
components have been released to the hosted repository.

Release Confirmation

You are about to release 1 repository.
=" This may take some time to complete.

Options

Automatically Drop @ &

Description

Confirm Cancel

Figure 11.16: Confirmation Dialog for Releasing a Staging Repository

11.4.4 Promoting a Staging Repository

If you have a closed staging repository that you want to promote to a Build Promotion Profile, open the
list of Staging Repositories and click the Promote button to bring up the Promote Confirmation dialog
displaed in Figure 11.16. It allows you to select the build promotion profile to which you want to stage
the repository to as well as provide a description.

Repository Management with Nexus 274 /440

Promote Confirmation

=] You are about to promote 1 repository.
= This may take some time to complete.

Options

Promotion Profile Closed Beta 7

Description

Initial QA was fine. Promating to closed beta tester for further
feedback

Confirm Cancel

Figure 11.17: Confirmation Dialog for Promoting a Staging Repository

Clicking on the Promote button in the dialog will promote the staging repository to a build promotion

repository and expose the contents of the selected staging repository through the target group(s) associated
with the build promotion profile.

The build promotion repository is accessible in the staging repository list as displayed in Figure 11.18.
If you add the column Promoted To to the list you will observe that the repository manager keeps track
of the promtion source. The Members tab for a build promotion repository displays the path of a build

promotion repository back to a staging repository. One or more staging repositories can be promoted to a
single build promotion profile.

Repository Management with Nexus 275/ 440

Welcome Staging Repositorie '*

-'_?gF{&fr&sh [EL Eeh Promote 5 Release g Drop
D Repository Profile Status Promoted To
|:| b nxs301-005 MAS301 promoted closed_beta-008
|:| —'[5 closed_beta-008 Closed Beta promoted releasemanager-007
-~ releasemanager-007 ReleaseManager closed

-- releasemanager-007

Summary || Activity | Content Members

=1 closed_beta-006 (staging: group)

=] nxs301-005 (staging: closed)

Figure 11.18: A Build Promotion Repository and its Members Panel

11.4.5 Releasing, Promoting, and Dropping Build Promotion Profiles

When you configure a build promotion profile and promote staging repositories to promotion profiles,
each build promotion profile creates a repository that contains one or more staging repositories. Just like
you can promote the contents of a staging repository to a build promotion profile, you can also promote
the contents of a build promotion profile to another build promotion profile. When you do this you can

create hierarchies of staging repositories and build promotion profiles that can then be dropped or released
together.

Repository Management with Nexus 276 /440

@ Staging Staging
Repository Group

Build Promotion
Promotion Group

Build Promotion
Promotion Group

Hosted Repository
Repository Group

Figure 11.19: Releasing, Promoting, and Dropping Build Promotion Profiles

When you promote a staging repository to a build promotion profile, you make the contents of a staging
repository available via a repository group associated with a build promotion profile.

For example, if you staged a few components to a QA staging repository and then subsequently promoted
that repository to a Closed Beta build promotion group, the contents of the QA staging repository would
initially be made available via a QA repository group. After a build promotion, these components would
also be available via a Closed Beta repository group.

You can take it one step further and promote the contents of the Closed Beta build promotion profile to
yet another build promotion profile. In this way you can have an arbitrary number of intermediate steps
between the initial staging deployment and the final release.

If you drop the contents of a build promotion profile, you roll back to the previous state. For example, if
you decided to drop the contents of the Closed Beta build promotion group, the repository manager will
revert the status of the staging repository from promoted to closed and make the components available
via the QA staging repository. The effects of promoting, dropping, and releasing components through a
series of staging profiles and build promotion profiles is shown in Figure 11.19.

When you perform a release on a build promotion profile, it rolls up to release all its members, ultimately
reaching a staging repository. Each staging repository releases its components to the release repository
configured in Figure 11.5. Because a build repository can contain one or more promoted staging reposi-
tories, this means that releasing a build promotion profile can cause components to be published to more

Repository Management with Nexus 277 /1 440

than one release repository.

i Hosted

Build
Promotion
. Staging Hosted

Figure 11.20: Promoting Multiple Repositories to the Same Build Promotion Profile

Build promotion profiles are not directly related to release repositories, only staging profiles are directly
associated with target release repositories. Figure 11.20 illustrates this behavior with two independent
staging repositories, each configured with a separate release repository. Releasing the build promotion
profile causes the repository manager to publish each staging repository to a separate hosted repository.

11.4.6 Multilevel Staging and Build Promotion

Nexus Repository Manager also supports multilevel staging and build promotion. With multilevel staging,
a staging repository can be tested and then promoted to multiple separate build promotion profiles consec-
utively and exposed through different repository groups to allow for additional testing and qualification
before a final frelease. Figure 11.21 illustrates a potential use for multilevel staging:

Stage
A developer publishes components to a QA staging profile that exposes the staged components in a
QA repository group used by an internal quality assurance team for testing.

Promote to Beta
Once the QA team has successfully completed testing, they promote the temporary staging reposi-
tory to a build promotion profile that exposes the staged components to a limited set of customers
who have agreed to act as beta testers for a new feature.

Release
Once this Closed Beta testing period is finished, the staged repository is then released and the
components it contains are published to a hosted release repository and exposed via the public
repository group.

Repository Management with Nexus 278 /440

Public

QA Select General
Testers Customers Public

Figure 11.21: Multilevel Staging and Build Promotion

To support this multilevel staging feature, you can configure Build Promotion profiles as detailed in
Section 11.2.3. Once you have promoted a Staging Repository to a Build Promotion profile, you can
drop, promote, or release the components it contains as detailed in Section 11.2.

11.5 Enforcing Standards for Deployment and Promotion with Rule-
sets

Nexus Repository Manager has the ability to define staging rules that must be satisfied to allow successful
deployment or before a staging repository can be promoted.

11.5.1 Managing Staging Rulesets

Staging rulesets are customizable groups of rules that are validated against the components in a stag-
ing repository when the repository is closed or promoted. If any rules cannot be validated, closing or
promoting the repository will fail.

A staging repository associated with a staging ruleset configured in the staging profile cannot be closed
or promoted until all of the rules associated with the rulesets have been satisfied. This allows you to
set standards for your own hosted repositories, and it is the mechanism that is used to guarantee the
consistency of components stored in the Central Repository.

To create a Staging Ruleset, click on the Staging Ruleset item in the Build Promotion menu. This will

Repository Management with Nexus 279 /440

load the interface shown in Figure 11.22. The Staging Ruleset panel is used to define sets of rules that
can be applied to staging profiles.

Welcome Staging Ruleset %
% Refresh () Add...~ (S Delete

Name = Description

Strict StrictRulesaet
Strict

MName: Strict

€

Description: StrictRuleset &

Rules

Select... hd Add

Applied Rules

Enabled Type
POM must not contain "system’ scoped dependencies
Signature Walidation

Sources Validation

FEEE

x| I%| X |

Javadec Walidation

Save Resat

Figure 11.22: Creating a Staging Ruleset

Nexus Repository Manager contains the following rules:

Artifact Uniqueness Validation
This rule checks to see that the component being released, promoted, or staged is unique in a
particular repository manager instance.

Checksum Validation
This rule validates that file checksum files are present and correct for the published components.

Javadoc Validation
The Javadoc Validation rule will verify that every project has a component with the javadoc classi-
fier. If you attempt to promote a staging repository that contains components not accompanied by
"-javadoc.jar" components, this validation rule will fail.

Repository Management with Nexus 280/ 440

No promote action allowed
This rule can be used to prevent the promotion of a staging repository to a build promotion profile.
It can be used enforce a choice between releasing and dropping a staging repository only.

No release action allowed
This rule can be used to prevent the direct release of a staging repository. It can be used enforce a
choice between promoting and dropping a staging repository only.

POM Validation
The Staging POM Validation rule will verify Project URL - project/url, Project Licenses - pro-
ject/licenses and Project SCM Information - project/scm. Any of these POM elements cannot be
missing or empty.

POM must not contain system scoped dependencies
Ensures that no dependency is using the scope system. This allows for a path definition ultimately
making the component rely on a specific relative path and using it is considered bad practice and
violates the idea of having all necessary components available in repositories.

POM must not contain release repository
This rule can ensure that no release repository is defined in the repositories element in the
POM. This is important since it potentially would circumvent the usage of the repository manager
and could point to other repositories that are not actually available to a user of the component.

Profile target matcher
This rule verifies the staging repository content against the repository target configured in the stag-
ing profile for this staging repository. This enforces that only components using the correct reposi-
tory path as a result of the groupld.

Signature Validation
The Signature Validation rule verifies that every item in the repository has a valid PGP signature.
If you attempt to promote a staging repository that contains components not accompanied by valid
PGP signature, this validation will fail.

Sources Validation
The Sources Validation rule will verify that every project has a component with the sources classi-
fier. If you attempt to promote a staging repository that contains components not accompanied by
"-sources.jar" components, this validation rule will fail.

11.5.2 Defining Rulesets for Promotion

To define a ruleset to be used for closing or promotion, edit the staging profile by selecting it in the staging
profile list. Scroll down to the sections Close Repository Staging Rulesets and Promote Repository Staging
Rulesets as shown in Figure 11.23 and add the desired available rulesets to the left-hand list of activated
rulesets for the current staging profile.

Repository Management with Nexus 281 /440

4 | Close Repository Staging Rulesets

Rulesets Available Rulesets
=] Strict
4
5l
b
]

Figure 11.23: Associating a Staging Ruleset with a Staging Profile

The next time you attempt to close or promote a staging repository that was created with this profile,
Nexus Repository Manager will check that all of the rules in the associated rulesets are being followed.

11.6 Policy Enforcement with Nexus 1Q Server

As discussed in Chapter 2, repository management and managing components in your software devel-
opment life cycle are closely related activities. The Nexus suite of tools provides a server application
for administrating your component usage policies and other features that integrate with other tools of the
suite. It has access to extensive security vulnerability and license information data from the Nexus IQ
Server backend that can be used as input for your policies. For example you could establish a policy
that is logged as violated, if any component in your software has a known security vulnerability or uses a
license that is incompatible with your business model.

Nexus Repository Manager can take advantage of Nexus IQ Server. It can be integrated to validate policies
as part of your usage of the staging suite.

Detailed instructions on how to install and configure the Nexus IQ Server as well as the integration with
Nexus Repository Manager can be found in the documentation.

http://links.sonatype.com/products/clm/doc

Repository Management with Nexus 282 /440

11.7 Artifact Bundles

11.7.1 Introduction

Artifact bundles are groups of related components that are all related by the same groupld, artifactld,
and version (GAV) coordinate. They are used by projects that wish to upload components to the Central
Repository.

Bundles must contain the following POM elements:

* modelVersion
 groupld

* artifactld

* packaging

* name

* version

* description

e url

* licenses

¢ SCm

— url

— connection

11.7.2 Creating an Artifact Bundle from a Maven Project

Artifact bundles are created with the Maven Repository Plugin. For more information about the Maven
Repository plugin, see http://maven.apache.org/plugins/maven-repository-plugin/.

Sample POM Containing all Required Bundle Elements lists a project’s POM that satisfies all of the
constraints that are checked by the Maven Repository plugin. The following POM contains a description

http://maven.apache.org/plugins/maven-repository-plugin/

Repository Management with Nexus 283 /440

and a URL, SCM information, and a reference to a license. All of this information is required before a
component bundle can be published to the Maven Central repository.

Sample POM Containing all Required Bundle Elements

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema—-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.sonatype.sample</groupId>
<artifactId>sample-project</artifactId>
<packaging>jar</packaging>
<version>1.0</version>
<name>sample-project</name>
<description>A Sample Project</description>
<url>http://books.sonatype.com</url>
<licenses>
<license>
<name>The Apache Software License, Version 2.0</name>
<url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>
<distribution>repo</distribution>
</license>
</licenses>
<scm>
<connection>
scm:git:git://github.com/sonatype/sample-project.git
</connection>
<url>http://github.com/sonatype/sample-project.git</url>
<developerConnection>
scm:git:git://github.com/sonatype-sample-project.git
</developerConnection>
</scm>
<dependencies>
<dependency>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>

To create a bundle from a Maven project, run the repository:bundle-create goal. This goal will check
the POM to see if it complies with the standards for publishing a bundle to a public repository. It will
then bundle all of the components generated by a particular build. To build a bundle that only contains
the standard, unclassified component from a project, run mvn repository:bundle-create. To generate a

Repository Management with Nexus 284 /440

bundle that contains more than one component, run mvn javadoc:jar source:jar reposit
ory:bundle-create

~/examples/sample-project$ mvn javadoc:jar source:jar repository:bundle-
create

[INFO] Scanning for projects...

[INFO] Searching repository for plugin with prefix: ’ javadoc’.
[INFO] =

__ >
[INFO] Building sample-project
[INFO] task-segment: [javadoc:jar, source:jar, repository:bundle-create <
]
[INFO] —
__ >

[INFO] [javadoc:jar {execution: default-cli}]

Loading source files for package com.sonatype.sample...
Constructing Javadoc information...

Standard Doclet version 1.6.0_15

Building tree for all the packages and classes...

[INFO] Preparing source:jar
[INFO] No goals needed for project - skipping
[INFO] [source:jar {execution: default-cli}]

TESTS

Running com.sonatype.sample.AppTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.03 sec

Results
Tests run: 1, Failures: 0, Errors: 0, Skipped: O

[INFO] [jar:jar {execution: default-jar}]
[INFO] Building jar: ~/temp/sample-project/target/sample-project-1.0.jar
1

[INFO] [repository:bundle-create {execution: default-cli}]

[INFO] The following files are marked for inclusion in the repository <>
bundle:
Done

sample-project-1.0. jar
sample-project-1.0-javadoc. jar
sample-project-1.0-sources. jar

w N P O
—_ — — —

Please select the number(s) for any files you wish to exclude, or "0’ when ¢

\

Repository Management with Nexus 285/ 440

you’ re done. Separate the numbers for multiple files with a comma (’,’).

Selection:

0

[INFO] Building jar: ~/temp/sample-project/target/sample-project-1.0- <«
bundle. jar

[INFO] —
__ >

[INFO] BUILD SUCCESSFUL

[INFO] <+
,, >

[INFO] Total time: 11 seconds

[INFO] Finished at: Sat Oct 10 21:24:23 CDT 2009

[INFO] Final Memory: 36M/110M

[INFO] <+
,, >

Once the bundle has been created, there will be a bundle JAR in the target directory. As shown in the
following command output, the bundle JAR contains a POM, the project’s unclassified component, the
javadoc component, and the sources component.

~/examples/sample-project$ cd target

~/examples/sample-project/target$ jar tvf sample-project-1.0-bundle. jar
0 Sat Oct 10 21:24:24 CDT 2009 META-INF/

98 Sat Oct 10 21:24:22 CDT 2009 META-INF/MANIFEST.MF

1206 Sat Oct 10 21:23:46 CDT 2009 pom.xml

2544 Sat Oct 10 21:24:22 CDT 2009 sample-project-1.0.Jjar

20779 Sat Oct 10 21:24:18 CDT 2009 sample-project-1.0-javadoc. jar

891 Sat Oct 10 21:24:18 CDT 2009 sample-project-1.0-sources.jar

11.7.3 Uploading an Artifact Bundle

To upload a component bundle to Nexus Repository Manager, you have to have a repository target for the
project configured as described in Section 6.14.

Once that is done, select Staging Upload from the Build Promotion section of the main menu. This will
load the Staging Upload tab. Choose Artifact Bundle from the Upload Mode drop-down. The Staging
Upload panel will switch to the form shown in Figure 11.24. Click on Select Bundle to Upload... and
then select the JAR that was created with the Maven repository plugin used in the previous sections. Once
a bundle is selected, click on Upload Bundle.

Repository Management with Nexus

286 / 440

Welcome Repositories
Select Staging Upload Mode

Upload Mode: Artifact Bundle

Select Bundle to Upload...

Bundle Filename:

sample-project-1.0-bundle.jar

Staging Upload =
v | @
Upload Bundle Reset

Figure 11.24: Uploading an Artifact Bundle

After a successful upload, a dialog displays the name of the created staging repository in a URL that links
to the content of the repository. To view the staging repository, click on the Staging Repositories link in
the Build Promotion section of the menu. You should see that the Staging Artifact Upload created and
closed a new staging repository as shown in Figure 11.25. This repository contains all of the components
contained in the uploaded bundle. It allows you to promote or drop the components contained in a bundle

as a single unit.

Staging Repositorie *

"’?gReﬂ'esh Path Lookup:
=l i sonatype-sample-001 (u:admin, a:127.0.0.1)
=I5 com
= sonatype
=i sample
=l =5 sample-project
=2£31.0

=] sample-project-1.0-jJavadoc.jar
= sample-project-1.0-javadoc.jar.md5
=] sample-project-1.0-javadoc jar.shal
=] sample-project-1.0-sources.jar
= sample-project-1.0-sources jar. md5
=] sample-project-1.0-sources jar.shal
=] sample-project-1.0.jar

%, Refresh Release | Drop | Promote

[7] Repository Profile

¥ sonatype-sample-001 (u:admin, a:127.0.0.1) sonatype-s...

€)
Browser

Status -

closed

Release R...

Releases

Select one or more Staging profiles or none to show all...

Prom...

v

Created On
Mon Aug 20

«l3

Figure 11.25: Staging Repository Created from Artifact Bundle Upload

Repository Management with Nexus 287 /440

Once the staging repository is closed, you can promote it to a Build Promotion Profile or release it to the
target repository of the staging profile as documented in Section 11.4.

Repository Management with Nexus 288 /440

Chapter 12

Repository Health Check

Available in Nexus Repository Manager OSS and Nexus Repository Manager

Repository Health Check is a feature of Nexus Repository Manager and Nexus Repository Manager OSS
that integrates data from the Nexus 1Q Data Services.

Repository Health Check provides access to a limited subset of the available data right in your repository
manager. The Nexus IQ Data Services expose information about the components, including license,
vulnerability, and other statistics such as relative usage popularity and age.

Repository Health Check analyzes all components found in a proxy repository of any supported format.
Repository formats currently supported are NuGet, npm, and Maven?2.

Auvailability of component information varies depending on the format and is constantly improved via
updates to the Nexus IQ Data Services.

Repository Management with Nexus 289/ 440

12.1 Configuring Repository Health Check

12.1.1 Configuration Per Repository

Repository health check can be setup for any repository, as long as the following apply:

* The Repository Type is Proxy.
* The Repository Policy is not Snapshot.

* The Repository is In Service.

Repository health check for a single repository can be enabled in one of two ways. The quickest way is
to simply click the Analyze button. After pressing this button, you will be prompted to either analyze all
or only the selected repository.

Alternatively, you can select the repository in the list of repositories and then set the Enabled configuration
in the Health Check tab to true as displayed in Figure 12.1. Administrator privileges are required to
perform this configuration.

Repository Management with Nexus

290/ 440

Welcome Repositories *

“% Refresh () Add..~ (@ Delete [T Trash..~ [User Managed Repositories~

Repository « Type Health Check Format Policy Repository Status
Public Repositories group { AMNALYZE maven2

3rd party hosted (@EETTYR7 NS maven2 Release In Service
Apache Snapshots proxy " ANALYZE] maven2 Snapshot In Service
Central proxy ' 100 Q 107 maven2 Release In Service
Central M1 shadow virtual " ANALYZE maven Release In Service
Codehaus Snapshots proxy " ANALYZE maven2 Snapshot In Service
MyProxyRepo proxy maven2 Release In Service
Releases hosted (@ETTYET NS maven2 Release In Service
Snapshots L L R ANALYZE maven2 Snapshot In Service
MyProxyRepo

Browse Index Browse Storage Configuration Health Check Routing 85L Smart Proxy

Configure Repository Health Check

Enabled false hA

save | Reset

Summary

Figure 12.1: Enabling Repository Health Check

Note

After enabling Repository Health Check for the first time you will be presented with an acceptance of

the Terms of Service.

Once enabled, a scheduled task that performs the initial analysis is created and started. This task uses the
identifier of the repository and the prefix Health Check: as a name and is configured to run regularly. New
component infomation is supplied by the Nexus IQ Data Services to Nexus Repository Manager daily.
The recurrence frequency can be changed in the scheduled task administration described in Section 6.5.
Disabling health check for a specific repository removes this scheduled task automatically.

After a successful analysis, the Health Check column in the list of repositories will display security and

license issue counts for the repository. An example is displayed in Figure 12.2.

Repository Management with Nexus

291 /440

Welcome .Rept.:siho.ris .
% Refresh () Add..~ (@ Delete {5 Trash..~
Repository « Type
Public Repositories group
3rd party hosted
Apache Snapshots proxy
Central proxy
Cenfral M1 shadow virtual
Codehaus Snapshots proxy
MyProxyRepo proxy
Releases hosted
Snapshots hosted

X

~ User Managed Repositories

Health Check Format Policy Repository Status
@ maven2

@ .1 maven2 Release In Service
@i maven2 Snapshot In Service
' 100 ﬁ 107 maven2 Release In Service
@3 maveni Release In Service
@ maven2 Snapshot In Service

" ANALYZE maven2 Release In Service
@5 maven2 Release In Service
@i maven2 Snapshot In Service

Figure 12.2: The Repositories List with Health Check Result Counts

Hovering your mouse pointer over that value will display the Repository Health Check summary data in
a pop-up window. A sample window is displayed in Figure 12.3.

FOR
oN
AGE

Central
Wed Apr 09 2014 at 10:48:32 AM
23 hours

W Security Vulnerability Summary

Critical (8-10} Thew 0 3 4 6 8 012 44 16 @ 20 CopyleRt
= [[3%
i 11%
k] N N N N N
a

Sevare (4-7) = Non Standard Not Provided
8
5
4

Moderate (1-3) a Weak Copyleft Liberal
2

7 1 16

= Watch a quick intro video on Sonatype CLM

145
ARTIFACTS IDENTIFIED AS OPEN SOURCE
100% of 145 TOTAL

® License Analysis Summary

= Help us improve this service by sending us feedback

View Detailed Report

Figure 12.3: A Result Summary for a Repository Health Check

At the bottom of the pop-up window, you find the button View Detailed Report to access the detailed
report. It will show up in another tab in the main area of the user interface.

Repository Management with Nexus

12.1.2 Gilobal Configuration

Alternatively to enabling and disabling health check for each repository, you can enable health check
globally. This can be achieved by creating and configuring a new capability called Health Check: Con-

figuration. Details about managing capabilities can be found in Section 6.6.

The health check configuration capability allows you to enable and disable it with the Enabled checkbox
and set up health check for all proxy repositories by enabling Configure for all proxy repositories. With
this configuration, health check will be enabled for all existing proxy repositories. Any newly created

proxy repository will automatically have health check enabled as well.

Note

When disabling the global configuration option, if you also have the Repositories tab open, be sure to

refresh the user interface to avoid viewing older data.

12.2 Accessing the Detailed Repository Health Check Report

Auvailable in Nexus Repository Manager only

The detailed report contains the same overview data and charts for security and license information at the

top displayed in Figure 12.4 .

Welcome “| Repositories % | RHC-Cantral Proxy *

1 hour

@ Security Vulnerability Summary # License Analysis Summary

Critical (8-10 Treoat o 00 00 300 400 500 600 Copyleft
* 1 1 ' 1 1 ' 1 _

Sevaro (4-7] P Standard ~ NotProvided
S S, T U F— —

Moderate (1-3)

Woak Copyleft Liberal

B

Central Proxy 1201 2117 19162
u Tue Feb 14 2012 at0B8:47:04 ARTIFACTS IDENTIFIED AS OPEN SQURCE SECURITY ALERTS LICENSE ALERTS
! 99% ot 41713 ToTs 611 Atfncts A

Figure 12.4: Summary of the Detailed Repository Health Check Panel

Repository Management with Nexus 293 /440

Below this overview, as visible in Figure 12.5, a drop-down for security and license information allows
you to toggle between two lists displaying further details. Select View By: Vulnerabilities to inspect the
security issues and View By: Artifacts to review the license information. Both lists have a filter for each
column at the bottom of the list that allows you to narrow down the number of rows in the table and find
specific entries easily.

The security list as visible in Figure 12.5 contains columns for Threat Level, Problem Code and the
GAV parameters identifying the affected component. The Problem Code column is a link to the security
warning referenced and commonly links a specific entry in the Common Vulnerabilities and Exposures
list. This database has descriptive text on vulnerabilities and further information with reference links.

View By: |) Vulnerabilities -
Threat Level ~ Problem Code Group Artifact Version
7 CVE-2010-2076 org.apache.cxf cxf-common-utiities 224
CVE-2011-3180 org.apache. tomecat coyote 6.0.33
CVE-2011-3180 org.openl.rules org.openl.rules.tomecat lib 57.2

Figure 12.5: The Security Data in the Detailed Repository Health Check Report

The Threat Level is rated in values used by the vulnerability databases and ranges from O for a low threat
to 10 for the highest threat. Critical values (noted in red) range from 8 to 10. Severe values (noted in
orange) range from 4-7, and Moderate values (noted in yellow) range from 1 to 3.

The license list as visible in Figure 12.6 shows a derived threat in the License Threat column. The
Declared License column details the license information found in POM file. The Observed Licenses in
Source columns lists all the licenses found in the actual source code of the library in the form of file
headers and license files. This data is based on source code scanning performed and provided by the
Nexus IQ Data Services. The next columns for the GAV parameters allow you to identify the component.
The last column Security Issues displays an indicator for potentially existing security issue for the same
component.

http://cve.mitre.org

Repository Management with Nexus 294 /440

View By: | [[) Artifacts -
License Threat -~ Declared License Observed Licenses it Group Artifact Version
. GPL Apache-2.0 Apache-2.0, GPL org.sonatype.configurat base-configuration 1.1
M GPL-20+ Apache-2.0+, BED, EPL- Apache-2.0, BSD, EPL-1 | biz.source_code baseBicoder 2010-12-18
. GPL, GPL-2.0 CDDL, GPL, GPL-2.0 Not Provided org.glassfish.core glassfish 3.1-b13
. GPL, GPL-2.0 CDDL, GPL, GPL-2.0 Not Provided org.glassfish javax jms 31
. GPL-2.0, GPL-2.0+ | Apache-2.0 Apache-1.1, Apache-2.0, | org.apache.servicemix = servicemix-scripting 2008.01
. GPL, GPL-20 CDDL, GPL, GPL-2.0 Not Provided org.glassfish javax transaction 10.0-b28
| 8 Apache-2.0 Apache, Apache-2.0, GP | org.apache.camel camelkjms 230
. GPL AFL-2.1, Apache-2.0, BS AFL-2.1, Apache-2.0, BS | org.cometd cometd-demo 113
. GPL-2.0+ GPL-2.0-with-classpath- GPL-2.0+ me.springframework spring-me-samphe-j2 1.0
. GPL Apache-2.0 Apache-2.0, GPL org.apache.camel camek-core 21.0

Figure 12.6: The License Data in the Detailed Repository Health Check Report

Licenses such as GPL-2.0 or GPL-3.0 are classified as the highest License Threat and labeled as Copyleft
and use red as signaling color.

A Non-Standard or Not Provided license is classified as a moderate threat and uses orange. Non-Standard
as a classification is triggered by the usage of atypical licenses for open source software such as Char-
ityWare license, BeerWare, NCSA Open Source License and many others. Not Provided is trigged as
classification if no license information was found anywhere.

Licenses such as CDDL-1.0, EPL-1.0 or GPL-2.0-CPE receive a Weak Copyleft classification and yellow
as notification color.

Liberal licenses that are generally friendly to inclusion in commercial products use blue and include
licenses such as Apache-2.0, MIT or BSD.

A general description about the implications of the different licenses is available when hovering over the
specific category in the License Analysis Summary. Further information about the different licenses can
be obtained from the Open Source Initiative. Mixed license scenarios like a mixture of licenses such as
Apache-1.1, Apache-2.0, LGPL and LGPL-2.1 can be complicated to assess in its impact and might be
legally invalid depending on the combination of licenses observed. Detailed implications to your business
and software are best discussed with your lawyers.

Nexus Repository Manager reports all components in the local storage of the respective repository in the
detail panel. This means that at some stage a build running against your repository manager required
these components and caused a download of them to local storage.

http://charityware.info/
http://charityware.info/
http://en.wikipedia.org/wiki/Beerware
http://en.wikipedia.org/wiki/University_of_Illinois/NCSA_Open_Source_License
http://opensource.org/licenses

Repository Management with Nexus 295 /440

To determine which project and build caused this download to be able to fix the offending dependency by
upgrading to a newer version or removing it with an alternative solution with a more suitable license, you
will have to investigate all your projects.

Repository Management with Nexus 296 / 440

Chapter 13

Managing Maven Settings

Available in Nexus Repository Manager only

13.1 Introduction

When you move an organization to a repository manager such as Nexus Repository Manager or Nexus
Repository Manager OSS, one of the constant challenges is keeping everyone’s Maven settings synchro-
nized to ensure the repository manager server is used and any further configuration in the settings file is
consistent. In addition, different users or use cases require different settings files. You can find out more
about the Maven settings file in Chapter 4. Nexus Repository Manager allows you to define templates
for Maven settings stored on the server and provide them to users via the user interface or automated
download.

If an administrator makes a change that requires every developer to modify his or her ~/.m2/setti
ngs . xml file, this feature can be used to manage the distribution of Maven settings changes to the entire
organization. Once you have defined a Maven settings template in Nexus Repository Manager, developers
can then use the Nexus M2Settings Maven Plugin to retrieve the new Maven settings file directly from
Nexus Repository Manager.

Repository Management with Nexus 297 / 440

13.2 Manage Maven Settings Templates

To manage Maven settings templates, click on Maven Settings in the Enterprise section of the main menu
on the left side of the user interface. This will load the panel shown in Figure 13.1.

Welcome Maven Settings %

2, Refresh () Add...~ (&) Delete

Template 1D « User Managed Template URL

default false http:localhost:B0B1 /nexus/servicelocal'templates/s ettings /default/content
mZsettings-prop... true hittp:/localhost:B081/nexus/service/local'templates/settings/m2settings- proptest/contd
nxs301 true http:flocalhost:B0B1 /nexus/servicelocaltemplates/s ettings /inxs 301 /content

e AN o artaloan trua httr Ml alhee t BO0EA naoe e le arvinallnealtarmndatoc fo attinoe (nwe B0 _ocartal andleanton,
ns301

Template ID nxs301 @

<7?xml version="1.0" encoding="UTF-B"?>
«<gettings xmins="http://maven.apache.org/SETTINGS,/1.0.0"
xmins:xsi="http://www.w3.org/2001/XMLSchema-instance”
xsi:schemalocation="http://maven.apache.org/SETTINGS/1.0.0 http://mawen.apache.arg/xsd/settings-
1.0.0.x5d">
<MIFrars>
<Mirrar>
«!-- This sends everything else to /public -->
<id>nexus</id>
<mirrorOf=>*</mirrorOf >
<Url>%{baseurl}/content/groups/public</url>
</mirrgr>
< imirrnres

Save Reset

Figure 13.1: The Maven Settings Panel

The Maven Settings panel allows you to add, delete, and edit Maven Settings templates. The default
template has an ID of default and can not be changed. It contains the recommended settings for a
standard repository manager installation. To create a new Maven settings template, click on the Add. ..
button and select Settings Template. Once the new template is created, assign a name to the template in
the Template ID text input and click the Save button.

To edit a template, click on a template that has a User Managed value of t rue in the list and edit the
template in the tab below the list. Once you are finished editing the template, click Save to save the
template. When editing the template you can insert some property references that will be replaced on the
server with their values at request time:

Repository Management with Nexus 298 /440

baseurl
The base URL of the repository manager installation.

userld
The user id of the user that is generating a Maven Settings file from this template.

Server side interpolation takes effect even when the download of the settings template is done with tools
like curl. These properties can be referenced in the settings file using the syntax $ {property}:

<settings>
<mirrors>
<mirror>
<id>nexus</id>
<mirrorOf>*</mirrorOf>
<url>${baseurl}/content/groups/public</url>
</mirror>

To preview a Maven settings template, click on the Template URL in the list. Clicking on this URL loads
a dialog window that contains the Maven Settings file generated from this template. This rendered view
of the Maven Settings template has all variable references replaced using the current context of the user.
This is the result of running the property replacement on the repository manager.

The Nexus M2Settings Maven Plugin supports the more powerful and feature-rich, client-side replace-
ment of properties using a $ [property] syntax.

Client-side properties supported by the Nexus M2Settings Maven Plugin are

baseurl
The base URL of the repository manager installation.

userld or username
The username of the user that is requesting a Maven Settings file from this template.

password
The password of the user.

userToken
The formatted user token composed of name code, : and pass code.

userToken.nameCode
The name code part of the user token.

userToken.passCode
The pass code part of the user token.

Repository Management with Nexus 299 /440

userToken.passCode.encrypted
The encrypted pass code part of the user token.

Client side interpolation allows you to fully populate a <server> section with the required properties
either with the plain text username and password:

<server>
<id>nexus</id>
<username>$ [username] </username>
<password>$ [password] </password>
</server>

You can also use the usertoken equivalent:

<server>
<id>nexus</id>
<!-— User-token: $[userToken] ——>
<username>$ [userToken.nameCode] </username>
<password>$ [userToken.passCode] </password>
</server>

Alternatively you can use Maven master-password encryption with the master keyword in settings—
security.xml:

<server>
<id>nexus-client-side-interp-encrypted</id>
<!-- Maven master password encrypted user token password —-—>
<username>$ [userToken.nameCode] </username>
<password>$ [userToken.passCode.encrypted] </password>
</server>

The usage of the . encrypted key results in values similar to the following snippet:

<server>
<id>nexus-client-side-interp-encrypted</id>
<!-- master password encrypted user token password —-—>
<username>KOYC8Q76</username>
<password>{fsx2f...}</password>

</server>

http://maven.apache.org/guides/mini/guide-encryption.html

Repository Management with Nexus 300/ 440

(:) Warning
userToken. » properties are only expanded to values if the User Token feature as docu-
mented in Section 6.17 is enabled and configured.

13.3 Nexus M2Settings Maven Plugin

Once you have defined a set of Maven templates, you can use the Nexus M2Settings Maven Plugin to
distribute changes to the settings file to the entire organization.

13.3.1 Running the Nexus M2Settings Maven Plugin

To invoke a goal of the Nexus M2Settings Maven Plugin, you will initially have to use a fully qualified
groupld and artifactld in addition to the goal. An example invocation of the download goal is:

mvn org.sonatype.plugins:nexus-m2settings-maven—-plugin:download

In order to be able to use an invocation with the simple plugin prefix like this

mvn nexus-m2settings:download

you have to have the appropriate plugin group org. sonatype.plugins configured in your Maven
Settings file:

<settings>

<pluginGroups>
<pluginGroup>org.sonatype.plugins</pluginGroup>
</pluginGroups>

An initial invocation of the download goal will update your settings file with a template from Nexus
Repository Manager. The default template in Nexus Repository Manager adds the org. sonatype.
plugins group to the pluginGroups, so you will not have to do this manually. It is essential that
you make sure that any new, custom templates also include this plugin group definition. Otherwise, there

Repository Management with Nexus 301 /440

is a chance that a developer could update his or her Maven settings and lose the ability to use the Nexus
M2Settings Maven Plugin with the short identifier.

Tip

This practice of adding pluginGroups to the settings file is useful for your own Maven plugins or other
plugins that do not use the default values of org.apache.maven.plugins ororg.codehaus.
mo jo as well, since it allows the short prefix of a plugin to be used for an invocation outside a Maven
project using the plugin.

The download goal of the Nexus M2Settings Maven Plugin downloads a Maven Settings file from
Nexus Repository Manager and stores it locally. The default file name for the settings file is the Maven
default for the current user of ~/.m2/settings.xml file. If you are replacing a Maven Settings file,
this goal can be configured to make a backup of an existing Maven Settings file.

Note
The download with the Nexus Maven Plugin is deprecated and has been replaced with the Nexus

M2Settings Maven Plugin.

13.3.2 Configuring Nexus M2Settings Maven Plugin

The download goal of the Nexus M2Settings Maven plugin prompts the user for all required parameters,
which include the server URL, the username and password, and the template identifier.

Note

For security reasons, the settings download requires an HTTPS connection to your repository manager
instance. If you are running the repository manager via plain HTTP you will have to set the secure
parameter to false.

The required configuration parameters can either be supplied as invocation parameters or when prompted
by the plugin and are:

nexusUrl
Points to the repository manager installation’s base URL. If you have installed the repository man-

Repository Management with Nexus 302 /440

ager on your local machine, this would be http://localhost:8081/nexus/. Access via HTTP only
works with the secure configuration parameter set to false.

username
The username to use for authenticating to the repository manager. Default value is the Java System
property user .name.

password
The password to use for authenticating to the repository manager.

templateld
The Template ID for the settings template as defined in the user interface.

Additional general configuration parameters are related to the security of the transfer and the output file:

secure
By default set to t rue, this parameter forces a URL access with HTTPS. Overriding this param-
eter and setting it to false allows you to download a settings file via HTTP. When using this
override it is important to keep in mind that the username and password transfered via HTTP can
be intercepted.

outputFile
Defines the filename and location of the downloaded file and defaults to the standard ~/ .m2/
settings.xml.

backup
If true and there is a pre-existing settings.xml file in the way of this download, back up the file to
a date-stamped filename, where the specific format of the datestamp is given by the backupTimes-
tampFormat parameter. Default value is t rue.

backup.timestampFormat
When backing up an existing settings.xml file, use this date format in conjunction with SimpleDate-
Format to construct a new filename of the form: settings.xml-$(format). Date stamps are used for
backup copies of the settings.xml to avoid overwriting previously backed up settings files. This pro-
tects against the case where the download goal is used multiple times with incorrect settings, where
using a single static backup file name would destroy the original, preexisting settings. Default value
is: yyyyMMddHHmms s.

encoding
Use this optional parameter to define a non-default encoding for the settings file.

As a Maven plugin, the Nexus M2Settings Maven Plugin relies on Apache Maven execution and on the
fact that the Central Repository can be contacted for downloading the required plugins and dependencies.
If this access is only available via a proxy server you can configure the proxy related parameters proxy,
proxy.protocol, proxy.host, proxy.port, proxy.username and proxy .password.

http://localhost:8081/nexus/

Repository Management with Nexus 303 /440

13.3.3 Downloading Maven Settings

You can download the Maven Settings from Nexus Repository Manager with a simple invocation, and
rely on the plugin to prompt you for the required parameters:

$ mvn org.sonatype.plugins:nexus—-m2settings-maven-plugin:download
[INFO] Scanning for projects...
[INFO]
[INFO]
[INFO] Building Maven Stub Project (No POM) 1
]
1

[INFO

[INFO

[INFO] —-—-- nexus-m2settings-maven-plugin:1.6.2:download (default-cli) @ <>
standalone—-pom ——-—

Nexus URL: https://localhost:8081/nexus

Username [manfred]: admin

Password: xx**xx%%x*

[INFO] Connecting to: https://localhost:8081/nexus (as admin)

[WARNING] Insecure protocol: https://localhost:8081/nexus/

[INFO] Connected: {pro} {version-exact}

Available Templates:
0) default
1) example

Select Template: 0

[INFO] Fetching content for templateId: default

[INFO] Backing up: /Users/manfred/.m2/settings.xml to: /Users/manfred/.m2/ ¢
settings.xml1-20130404120146

[INFO] Saving content to: /Users/manfred/.m2/settings.xml

[INFO] === —mmmmm oo
[INFO] BUILD SUCCESS

[INFO] ————— o
[INFO] Total time: 29.169s

[INFO] Final Memory: 12M/153M

1
]
[INFO] Finished at: Thu Apr 04 12:01:46 PDT 2013
1
[INFQ] ======———==—===—==—===—=========—===——==—====c

If your repository manager is hosted internally and does not use HTTPS you can download a settings file
with

$ mvn org.sonatype.plugins:nexus-m2settings-maven-plugin:download -Dsecure <
=false

As displayed, the plugin will query for all parameters and display a list of the available templates. Alter-
natively, you can specify the username, password, URL, and template identifier on the command line.

$ mvn org.sonatype.plugins:nexus-m2settings-maven-plugin:download \

Repository Management with Nexus 304 /440

-DnexusUrl=https://localhost:8443/nexus \
-Dusername=admin \

-Dpassword=adminl23 \
—-DtemplateId=default

Enabling proxy access with ~-Dproxy=t rue will trigger the plugin to query the necessary configuration:

[INFO] Connecting to: https://localhost:8443/nexus (as admin)
Proxy Protocol:
0) http
1) https
Choose: 1
Proxy Host: myproxy.example.com
Proxy Port: 9000
Proxy Authentication:

0) vyes
1) no
Choose: 0

Proxy Username [manfred]: proxy
Proxy Password: *xx*x*x
[INFO] Proxy enabled: proxy@https:myproxy.example.com:9000

In some scenarios you have to get an initial settings file installed on a computer that does not have internet
access and, therefore, cannot use the Maven plugin. For this first initial configuration that connects the
computer to the repository manager for following Maven invocations, a simple HTTP GET command to
retrieve an unmodified settings file can be used:

curl -u admin:adminl23 -X GET "http://localhost:8081/nexus/service/local/ <+
templates/settings/default/content" > ~/.m2/settings.xml

Modify the commandline above by changing the username:password supplied after -u and adapting the
URL to the URL visible in the user interface. This invocation will however not replace parameters on the
client side, so you will have to manually change any username or password configuration, if applicable.

13.4 Summary

Overall the Maven Settings integration in Nexus Repository Manager allows you to maintain multiple
settings template files on the central repository manager. You can configure settings files for different use
cases like e.g.,

Repository Management with Nexus 305 /440

* referencing a repository group containing only approved components in the mirror section for your
release or QA builds,

* providing an open public group mirror reference to all of your developers for experimentation with
other components.

By using the Nexus M2Settings Maven Plugin you can completely automate initial provisioning and
updates of these settings files to your users.

Repository Management with Nexus 306 / 440

Chapter 14

OSGi Bundle Repositories

Available in Nexus Repository Manager only

14.1 Introduction

Nexus Repository Manager supports the OSGi Bundle Repository format. The OSGi Bundle format is
defined by the OSGi RFC 112 "Bundle Repository." It is a format for the distribution of OSGi bundles
which includes any components that are described by the OSGi standards set forth in RFC 112. An
OBR repository has a single XML file that completely describes the contents of the entire repository.
Nexus Repository Manager can read this OBR repository XML and create proxy repositories that can
download OSGi bundles from remote OBR repositories. Nexus Repository Manager can also act as a
hosting platform for OSGi bundles. You can configure your builds to publish OSGi bundles to Nexus
Repository Manager, and then expose these bundle repositories to internal or external developers using
Nexus Repository Manager as a publishing and distribution platform.

Nexus Repository Manager can also act as a bridge between Maven repositories and OSGi bundle repos-
itories. When you configure a virtual OBR repository that uses a Maven 2 repository as a source reposi-
tory, Nexus Repository Manager will expose components with the appropriate metadata from the Maven
repository as OSGi bundles. In this way, you can unify your OSGi and non-OSGi development efforts
and publish components with the appropriate OSGi metadata to Nexus Repository Manager. Non-OSGi
clients can retrieve software components from a Maven repository, and OSGi-aware clients can retrieve
OSGi bundles from a virtual OBR repository.

http://www.osgi.org/Download/File?url=/download/rfc-0112_BundleRepository.pdf

Repository Management with Nexus 307 /440

The following sections detail the procedures for creating and managing OBR repositories.

Nexus Repository Manager has OBR support installed by default. Prior to any usage in Nexus Repository
Manager OSS the Nexus OBR Plugin needs to be installed. You can download the ~bundle. zip file
for your specific version from the Central Repository:

* Nexus OBR Plugin

Extract the file into sonatype-work/nexus/plugin-repository and restart the repository man-
ager. Ensure to repeat the step for any upgrades.

14.2 Proxy OSGi Bundle Repositories

Nexus Repository Manager can proxy an OSGi Bundle Repository using the OBR repository XML as the
remote storage location. To create a new proxy OBR repository access the Repositories view from the
Views/Repositories submenu and click the Add.. button above the list of repositories and choose Proxy
Repository from the drop-down of repository types.

In the New Proxy Repository configuration tab, supply a Repository ID and a Repository Name and select
OBR as the Provider.

Then enter the URL to the remote repository OBR XML as the Remote Storage Location and click Save.

Figure 14.1 provides a sample configuration used to create a proxy of the Apache Felix OBR repository.

http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22nexus-obr-plugin%22%20AND%20l%3A%22bundle%22

Repository Management with Nexus 308 /440

New Proxy Repository

Repository ID felix-proxy L2

Repository Name Felix OBR Repository L2

Repository Type &

Provider OBR v &

Format L2

Repository Policy Release | | &

Default Local Storage Location o
Override Local Storage Location -

+ | Remote Repository Access

Remote Storage Location http://felix.apache.org/obr/releases.xmi 127

L

Save | Cancel |

Figure 14.1: Creating an OSGi Bundle Proxy Repository

To verify that the OBR proxy repository has been properly configured, you can then load the OBR XML
from Nexus Repository Manager. If Nexus Repository Manager is properly configured, you will be able
load the obr . xml by navigating to the .meta directory:

Scurl http://localhost:8081/nexus/content/repositories/felix-proxy/.meta/ <
obr.xml
<?xml version=’1.0’ encoding=’'utf-8’7>
<?xml-stylesheet type=’text/xsl’ href='"http://www2.0sgi.org/www/obr2html. <
xsl’ ?>
<repository name=’Felix OBR Repository’ lastmodified="1247493075615">
<resource id=’org.apache.felix.javax.servlet/1.0.0"
presentationname=’ Servlet 2.1 API’
symbolicname='org.apache.felix.javax.servlet’
uri=’../bundles/org.apache.felix.javax.servlet-1.0.0.jar’
version="1.0.0">
<description>
Servlet 2.1 API
</description>
<documentation>
http://www.apache.org/
</documentation>
<license>
http://www.apache.org/licenses/LICENSE-2.0.txt

Repository Management with Nexus 309 /440

</license>

14.3 Hosted OSGi Bundle Repositories

Nexus Repository Manager can host an OSGi Bundle Repository, providing you with a way to pub-
lish your own OBR bundles. To create a hosted OBR repository access the Repositories view from the
Views/Repositories submenu and click the Add.. button above the list of repositories and choose Hosted
Repository from the drop-down of repository types.

In the New Hosted Repository configuration tab, supply a Repository ID and a Repository Name and select
OBR as the Provider.

Then enter the URL to the remote repository OBR XML as the Remote Storage Location and click Save.

Figure 14.2 provides some sample configuration used to create a hosted OBR repository.

New Hosted Repository

Repository ID local-obr -
Repository Name Local OBR Repository -
Repository Type =

Provider OBR v |

Format -4 Y
Repository Policy Release | | &

€

Default Local Storage Location

€

Override Local Storage Location

Save Cancel

Figure 14.2: Creating a Hosted OSGi Bundle Repository

Repository Management with Nexus 310/440

14.4 Virtual OSGi Bundle Repositories

Nexus Repository Manager can be configured to convert a traditional Maven repository into an OSGi
Bundle repository using a virtual OBR repository. To configure a virtual OBR repository, create a new
Virtual Repository in the Repositories administration area providing a Repository ID and Repository Name
as well as the Source Nexus Repository ID setting the repository you want to expose as OBR. Finally set
the Provider to OBR and click Save.

Figure 14.3 provides a sample configuration used to create a virtual OBR repository that transforms the
proxy repository for Maven Central into an OBR repository.

New Virtual Repository
Repository 1D central-abr 2]
Repository Mame Central OBR Repository 2]
Repository Type L2
Provider OER v
Format g
Source Nexus Repository ID Mawven Central v e
Synchronize on Startup False v e

Save Cancel g

Figure 14.3: Creating a Virtual OSGi Bundle Repository from a Maven Repository

14.5 Grouping OSGi Bundle Repositories

Just like the repository manager can group Maven repositories, Eclipse update sites, and P2 repositories,
it can also be configured to group OSGi Bundle Repositories. To group OSGi bundle repositories, create
a new Repository Group and set the Provider to OBR and select the repositories you want to group after
providing a Group ID and a Group Name.

Figure 14.4 shows an example of the a new repository group that contains a hosted OSGi Bundle reposi-
tory, a virtual OSGi Bundle repository, and a OSGi Bundle proxy repository.

Repository Management with Nexus

311 /440

New Repository Group
Group ID

Group Name

Provider

Format

Ordered Group Repositories
[=] Central OBR Repository
[=] Felix OBR Repository
=] Local OBR Repository

obr-group (%7
0OBR Group [+
OBR Group >

Available Repositories

PR

Figure 14.4: Creating a New OSGi Bundle Repository Group

Repository Management with Nexus 312/ 440

Chapter 15

P2 Repositories

Available in Nexus Repository Manager only

15.1 Introduction

Nexus Repository Manager supports the P2 Repository format. The P2 repository format is a provisioning
platform for Eclipse components. For more information about the P2 repository format, see the Equinox
P2 documentation on the Eclipse Wiki.

The following sections detail the procedures for creating and managing P2 repositories.

Nexus Repository Manager has P2 support installed by default. Prior to any usage in Nexus Repository
Manager OSS the Nexus P2 Bridge Plugin and the Nexus P2 Repository Plugin need to be installed. You
can download the bundle.zip files for your specific version from the Central Repository:

* Nexus P2 Repository Plugin

* Nexus P2 Bridge Plugin

Extract the two files into sonatype-work/nexus/plugin-repository and restart the reposi-

http://wiki.eclipse.org/Equinox/p2
http://wiki.eclipse.org/Equinox/p2
http://search.maven.org/#search|ga|1|a%3A%22nexus-p2-repository-plugin%22%20AND%20l%3A%22bundle%22
http://search.maven.org/#search|ga|1|a%3A%22nexus-p2-bridge-plugin%22%20AND%20l%3A%22bundle%22

Repository Management with Nexus 313 /440

tory manager.

Tip

P2 processing requires larger amounts of memory. We suggest to increase the configured Java heap
memory by increasing wrapper . java.maxmemory to a minimum of 2048. This configuration value
can be found in SNEXUS_HOME /bin/jsw/conf/wrapper.conf.

15.2 Proxy P2 Repositories

Nexus Repository Manager can proxy a P2 Repository. To create a new proxy P2 repository:

1. Click Repositories in the Views/Repositories menu.

2. Click the Add.. button above the list of repositories, and choose Proxy Repository from the drop-
down of repository types.

3. In the New Proxy Repository window,
a. Select P2 as the Provider.
b. Supply a Repository ID and a Repository Name.

c. Enter the URL to the remote P2 repository as the Remote Storage Location.
d. Click Save.

Figure 15.1 provides a sample configuration used to create a proxy of the Indigo Simultaneous Release
P2 repository.

Repository Management with Nexus 314 /440

New Proxy Repository
Repository 1D indigo-releases @
Repository Name Indigo Releases @
Repasitory Type L=
Provider P2 k-
Format L=
v
Default Local Storage Location L=
Override Local Storage Location L2
“ | Remote Repository Access
Remote Storage Location http://download.eclipse.org/releasesfindigo o
~

Auto Blocking Enabled True v |

File Content Validation True v |

Checksum Policy Warn v |

Save Cancel

Figure 15.1: Creating a P2 Proxy Repository

15.3 Grouping P2 Repositories

Just like Nexus Repository Manager can group Maven repositories and OBR repositories, it can also be
configured to group P2 Repositories. To group P2 repositories:

1. Click Repositories in the Views/Repositories menu.

2. Click the Add.. button above the list of repositories, and choose Repository Group from the drop-
down of repository types.

3. In the New Repository Group window,

a. Select P2 as the Provider.

b. Drag and drop one or more P2 repositories into the new group.

Repository Management with Nexus

315/440

c. Supply a Group ID and a Group Name.

d. Click Save.

Figure 15.2 shows an example of a repository group that contains two P2 proxy repositories.

New Repository Group
Group ID

Group Name

Provider

Format

Publish URL

Ordered Group Repositories

[Z] Indigo Releases
[=] Eclipse 3.7 Project Updates

indigo-repos L]
Eclipse Indigo Group L]
P2 W

True v &

Available Repositories

Figure 15.2: Creating a New P2 Repository Group

Repository Management with Nexus 316 /440

Chapter 16

.NET Package Repositories with NuGet

Available in Nexus Repository Manager OSS and Nexus Repository Manager

16.1 Introduction

With the creation of the NuGet project, a package management solution for .NET developers has become
available. Similar to Apache Maven dependency management for Java developers, NuGet makes it easy
to add, remove, and update libraries and tools in Visual Studio projects that use the .NET Framework.

The project websites at www.nuget.org and https://github.com/NuGet/Home host tool downloads and
detailed documentation as well as links to further resources and provide a repository and features to
upload your open source NuGet packages. With the NuGet Gallery a repository of open source libraries
and tools is available and the need for repository management arises.

@ Important
With the release of version 2.9, NuGet support is available in Nexus Repository Manager and
Nexus Repository Manager OSS.

http://nuget.org/
http://www.nuget.org
https://github.com/NuGet/Home

Repository Management with Nexus 317 /440

Nexus Repository Manager and Nexus Repository Manager OSS support the NuGet repository format
for hosted and proxy repositories. They also supports aggregation of NuGet repositories and conversion
of other repositories containing . nupkg components to the NuGet format. This allows you to improve
collaboration and control, while speeding up .NET development, facilitating open source libraries and
sharing of internal component across teams. When you standardize on a single repository for all your
development and use it for internal components as well, you will get all the benefits of using a repository
manager when working in the .NET architecture.

To share a library or tool with NuGet, you create a NuGet package and store it in the repository manager-
based NuGet repository. Similarly, you can use packages others have created and made available in their
NuGet repositories by proxying them or downloading the packages and installing them in your own hosted
repository for third party packages.

Note
Users can enable Repository Health Check on a repository using the NuGet format to retrieve all meta-
data from components in the repository, such as security and license. See Chapter 12 for details.

The NuGet Visual Studio extension allows you to download the package from the repository and install
it in your Visual Studio project or solution. NuGet copies everything and makes any required changes to
your project setup and configuration files. Removing a package will clean up any changes as required.

Tip
Using NuGet repositories benefits from a larger memory size available to the repository manager. This
memory allocation can be configured in wrapper . conf as documented in Section 3.5.

16.2 NuGet Proxy Repositories

The NuGet Gallery is the central repository used by all package authors and consumers. To reduce
duplicate downloads and improve download speeds for your developers and CI servers, you should proxy
the NuGet Gallery with the repository manager. If you use other external repositories, you should also
proxy these.

To proxy an external NuGet repository, you simply create a new Proxy Repository as documented in
Section 6.2. The Provider has to be set to NuGet. The Remote Storage Location has to be set to the URL
of the remote repository you want to proxy. The URL for the main NuGet Gallery repository is

Repository Management with Nexus 318 /440

https://www.nuget.org/api/v2/

A complete configuration for proxying the NuGet Gallery is visible in Figure 16.1.

Welcome Repositories ¥
“ZyRefresh () Add...v @Delete [™User Managed Repositories « nuge [x]
Repository - Type Health Check Format Repositor... Repository Path
NuGet All group 0 nuget http:/flocalhest:B08 1/nexus/content/grou
NuGet 3rd Party hosted 0 nuget In Service http:/flocalhost:B0B1/nexus/content/repod
NuGet Gallery proxy ' 0 ﬁ [i] nuget In Service http:/localhost:B081/nexus/content/repod
NuGet Releases hosted 0 nuget In Service http:/flocalhost:8081/nexus/content/repod
NuGet Gallery

Browse Storage | Cenfiguration Health Check || NuwGet || Smart Proxy | Summary

Repository ID

Repasitory Name NuGet Gallery

Repaository Type

Provider hd
Format

Repository Palicy b

Default Local Storage Location

Owverride Local Storage Location

-|R te R itory A
Remote Storage Location http://nuget.org/api/v2/
Download Remote Indexes ¥
Auto Blocking Enabled True w7
File Content Validation True R
Checksum Policy Ignore »

[Authentication (optional)

Save Resat I

Figure 16.1: NuGet Proxy Repository Configuration for the NuGet Gallery

The repository configuration for a NuGet proxy repository has an additional tab titled NuGet as visible in
Figure 16.2. It displays the Package Source URL that is URL where the repository is available as a NuGet
repository.

Repository Management with Nexus 319/440

NuGet Gallery proxy Wo ®o nuget In Service
NuGet Releases hosted (]] nuget In Service
NuGet Gallery

Browse Storage NuGet

Package Source http://localhost:B081/ nexus/service/local/nuget/nuget-gallery/

Figure 16.2: NuGet Gallery with Package Source URL

By default, searches in NuGet repositories in the repository manager are passed through to the remote
repositories, and the search results are merged with internal search results and included in an internally
managed index. This merging has to make some assumptions to generate component counts.

16.3 NuGet Hosted Repositories

A hosted repository for NuGet can be used to upload your own packages as well as third-party packages.
It is good practice to create two separate hosted repositories for these purposes.

To create a NuGet hosted repository, simply create a new Hosted Repository and set the Provider to
NuGet. A sample configuration for an internal releases NuGet hosted repository is displayed in Fig-
ure 16.3.

Repository Management with Nexus 320 /440

NuGet Releases hosted | i nuget In Service http:/flocalhost:8081

NuGet Releases

Browse Storage | Configuration NuGet | Smart Prowy || Summary NuPkg Upload

Repository ID

Repository Name NuGet Releases
Repository Type

Provider w
Format

Repaository Policy W

Default Local Storage Location

Owerride Local Storage Location
« | Access Settings

Deployment Policy Disable Redeploy v
Allow File Browsing True 7
Include in Search v
Publish URL True R

| Expiration Settings

Not Found Cache TTL 1440 minutes

Save Reset

Figure 16.3: Example Configuration for a NuGet Hosted Repository for Release Packages

Besides the NuGet tab, the configuration for the repository has a NuPkg Upload tab as displayed in
Figure 16.4 that allows you to manually upload one or multiple packages.

Repository Management with Nexus 321 /440

NuGet Releases
Browse Storage || Configuration || MuGet || Smart Proxy || Summary | NuPkg Uplead
Select Package(s) for Upload
Browse...

Filename:

Packages Remaove

Remave Al

Upload Package(s) Reset

Figure 16.4: The NuPkg Upload Panel for a Hosted NuGet Repository

The NuGet feed is immediately updated as packages are deployed or deleted from the host repository. To
rebuild the feed for a hosted NuGet repository you can manually schedule a Rebuild NuGet Feed task.

16.4 NuGet Virtual Repositories

If you have deployed NuGet packages to a Maven repository in the past, you can expose them to Visual
Studio by creating a virtual repository as documented in Section 6.2 and setting the Provider to NuGet.
The setup displayed in Figure 16.5 shows a virtual repository configured to expose the content of the
regular Maven Releases repository as a NuGet repository, so that NuGet can access any NuGet packages
deployed to the releases repository.

Repository Management with Nexus 322 /440

New Virtual Repository
Repaository ID nuget-releases .2]
Repository Name MuGet Releases -
Repasitory Type o
Provider NuGet v e
Format o
Source Nexus Repository 1D Releases v &
Synchronize on Startup False v | &)

Save I Cancel J

Figure 16.5: A Virtual NuGet Repository for the Releases Repository

The NuGet feed is immediately updated as packages are deployed or deleted from the shadowed reposi-
tory. To rebuild the feed for a virtual NuGet repository, you can manually schedule a Synchronize Shadow
Repository task.

16.5 NuGet Group Repositories

A repository group is the recommended way to expose all your NuGet repositories to your users, without
needing any further client side configuration. A repository group allows you to expose the aggregated
content of multiple proxy and hosted repositories with one URL to your tools. This is possible for NuGet
repositories by creating a new Repository Group with the Provider set to NuGet as documented in Sec-
tion 6.3.

A typical, useful example would be to group the proxy repository that proxies the NuGet Gallery, a NuGet,
hosted repository with internal software packages and another NuGet, hosted repository with third-party
packages. The configuration for such a setup is displayed in Figure 16.6.

Repository Management with Nexus 323 /440

NuGet Public Group

Browse Storage | Configuration NuGet Smart Proxy

Group ID

Group Name NuGet Public Group

Provider i
Format

Publish URL True i

Ordered Group Repositories Available Repositories

5 NuGet Gallery
=] NuGet Releases
=] NuGet Third Party

Save Reset

Figure 16.6: A Public NuGet Group Combining a Proxy and Two Hosted Repositories

Using the Repository Path of the repository group as your NuGet repository URL in your client tool will
give you access to the packages in all three repositories with one URL. Any new packages added as well
as any new repositories added to the group will automatically be available.

16.6 Accessing Packages in Repositories and Groups

Once you have set up your hosted and proxy repositories for NuGet packages, and potentially created a
repository group, you can access them with the nuget tool on the command line. Copy the Package
Source URL from the NuGet tab of the repository/group configuration you want to access and add it to
nuget on the command line with e.g.:

nuget sources add —-name NuGetNexus -source http://localhost:8081/nexus/
service/local/nuget/nuget-public

Replace 1localhost with the public hostname or URL of your repository manager and nuget-pub
1ic with the name of the repository you want to proxy. Ideally, this will be your NuGet group.

Repository Management with Nexus 324 /440

After this source was added, you can list the available packages with the command nuget list.

Access to the packages is not restricted by default. If access restrictions are desired, you can configure
security directly or via LDAP/Active Directory external role mappings combined with repository targets
for fine grained control. Authentication from NuGet is then handled via NuGet API keys as documented
in Section 16.7.

16.7 Deploying Packages to NuGet Hosted Repositories

In order to authenticate a client against a NuGet repository, NuGet uses an API key for deployment
requests. These keys are generated separately on request from a user account on the NuGet gallery and
can be regenerated at any time. At regeneration, all previous keys generated for that user are invalid.

16.7.1 Creating a NuGet API-Key

For usage with the repository manager, NuGet API keys are only needed when packages are going to be
deployed; therefore, API key generation is by default not exposed in the user interface to normal users.
Only users with at least the Deployment role have access to the API keys.

Other users that should be able to access and create an API key have to be given the Nexus API-Key Access
role in the Users security administration.

In addition, the NuGet API-Key Realm has to be activated. To do this, simply add the realm to the selected
realms in the Security Settings section of the Server configuration available in the Administration submenu
of the left-hand navigation panel.

Once this is set up, you can view as well as reset the current Personal API Key in the NuGet tab of any
NuGet proxy or hosted repository as visible in Figure 16.7

Repository Management with Nexus 325/ 440

NuGet Releases

Browse Storage || Configuration NuGet Smart Proxy Summary NuPkg Upload

Package Source http://localhost:BOB1/ nexus/servicg/local/nuget/ nuget-releases/

Personal APTKey sssssssssssssssssssssssssssnsnnsnnns

View APl Key | Reset APl Key

Figure 16.7: Viewing and Resetting the NuGet API Key in the NuGet Configuration Tab

16.7.2 Creating a Package for Deployment

Creating a package for deployment can be done with the pack command of the nuget command line
tool or within Visual Studio. Detailed documentation can be found on the NuGet website.

16.7.3 Deployment with the NuPkg Upload User Interface

Manual upload of one or multiple packages is done on the NuPkg Upload tab of the repository displayed
in Figure 16.4. Press the Browse button to access the package you want to upload on the file system and
press Add Package. Repeat this process for all packages you want upload, and press Upload Package(s)
to complete the upload.

16.7.4 Command line based Deployment to a Nexus NuGet Hosted Repository

Alternatively to manual uploads, the nuget command line tool allows you to deploy packages to a
repository with the push command. The command requires you to use the API Key and the Package
Source path. Both of them are available in the NuGet tab of the hosted NuGet repository to where you
want to deploy. Using the delete command of nuget allows you to remove packages in a similar
fashion.

Further information about the command line tool is available in the on-line help.

http://docs.nuget.org/
http://docs.nuget.org/docs/reference/command-line-reference

Repository Management with Nexus 326 /440

16.8 Integration of NuGet Repositories in Visual Studio

In order to access a NuGet repository or preferably all NuGet repositories exposed in a group from the
repository manager, you provide the Name and Source to the Visual Studio configuration for the Package
Sources of the NuGet Package Manager as displayed in Figure 16.8.

Options (2l
Search Options (Ctri+E) P Available package sources: +
> Eerey https://www.nuget.org/api/v2/
b Projects and Solutions https://www.nuget.org/api/v2/
b Source Control Nexus
Text Edit: =
b = http://localhost:8081/nexus/service/local/nuget/nuget.group
b Debugging
I Database Tools
b HTML Designer
4 NuGet Package Manager Machine-wide package sources:
General Mi NET
Package Sources htttcrt";fﬂ o Et /3pi/v2/curated-feeds/microsoftdotnet/
b Peformance Tools ps://www.nuget.org/api/v2/curated-feeds/microsoftdotn
P SQL Server Tools
b Text Templating
b Web Performance Test Tools
Name: Nexus
Source: http://localhost:8081/nexus/service/local/nuget/nuge E]

i oK i l Cancel l

Figure 16.8: Package Source Configuration for the NuGet Package Manager in Visual Studio

With this configuration in place, all packages available in your NuGet repository will be available in the
NuGet Package Manager in Visual Studio.

Repository Management with Nexus 327 /440

Chapter 17

Node Packaged Modules and nhpm Reg-
istries

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

17.1 Introduction

The command line tool npm is a package management solution for Javascript-based development. It is
used to create and use node packaged modules and is built into the popular Javascript platform Node.js,
which is mostly used for server-side application development.

The npm registry at https://www.npmjs.org/ is the default package registry, from which components can
be retrieved. It contains a large number of open source packages for Node.js based server-side application
development, build tools like bower or grunt and many other packages for a variety of use cases.

Nexus Repository Manager and Nexus Repository Manager OSS support the npm registry format for
proxy repositories. This allows you to take advantage of the packages in the npm registry and other
public registries without incurring repeated downloads of packages, since the will be proxied.

In addition, Nexus Repository Manager and Nexus Repository Manager OSS support running your own
private registry - also known as a hosted repository using the npm format. You can share internally

http://www.nodejs.org
https://www.npmjs.org

Repository Management with Nexus 328 /440

developed, proprietary packages within your organization via these private registries allowing you to
collaborate efficiently across development teams with a central package exchange and storage location.

Note
Users can enable Repository Health Check on a repository using the npm format to retrieve all metadata
from components in the repository, such as security and license. See Chapter 12 for details.

To simplify configuration Nexus Repository Manager and Nexus Repository Manager OSS support ag-
gregation of npm registries. This allows you to expose all the external package from the npm registry
and other public registries as well as the private registries as one registry, which greatly simplifies client
configuration.

To share a package or tool with npm, you create a npm package and store it in the repository manager-
based npm registry. Similarly, you can use packages others have created and made available in their
NPM repositories by proxying them or downloading the packages and installing them in your own private
registry for third party packages.

® Important
npm support is a feature of version 2.10 and higher and is available in Nexus Repository Man-
ager and Nexus Repository Manager OSS and requires npm version 1.4 and above.

17.2 Proxying npm Registries

To reduce duplicate downloads and improve download speeds for your developers and CI servers, you
should proxy the registry hosted at https://registry.npmjs.org. It is accessed directly by npm out-of-the-
box. You can also proxy any other registries you require.

To proxy an external npm registry, you simply create a new Proxy Repository as documented in Sec-
tion 6.2. The Provider has to be set to NPM. The Remote Storage Location has to be set to the URL of the
remote repository you want to proxy. The official URL for the main npm registry is

https://registry.npmjs.org

A complete configuration for proxying the default npm registry is visible in Figure 17.1.

https://registry.npmjs.org

Repository Management with Nexus 329 /440

Welcome Repositories ¥
“ZRefresh () Add...» (2 Delete i Trash...» [User Managed Repositories + npm (x]
Repository « Type Health Check Format Repository Path

npme-all group [~) npm hitp:fecalhost:B081 /nexus/content/groups/npm-all

npm-internal hosted o npm http:focalhost:B0B1 inexus/content/repositoriesin. ..

npmijs Regisiry proxy g npm hitp:fecalhost:B0B1

npmjs Registry
Configuration Health Check || SS5L Summany
Repository ID
Repository Name npmijs Registry
Repository Type
Provider v
Format
Repository Policy hd
Default Local Storage Location

Override Local Storage Location
4| Remote Repository Access

Remote Storage Location https://registry.npmjs.org
Download Remote Indexes ¥

Auto Blocking Enabled True 7

File Content Validation True =

Checksum Policy Ignore 22

[Authentication {optional)

Save Reset I

Figure 17.1: Proxy Repository Configuration for the npm Registry

Warning
Browsing the registry storage or the remote registry and searching for packages in the repository

manager is not supported

Repository Management with Nexus 330/440

17.3 Private npm Registries

A private npm registry can be used to upload your own packages as well as third-party packages. You
can create a private npm registry by setting up a hosted repository with the npm format in the repository
manager. It is good practice to create two separate hosted repositories for these purposes.

To create a hosted repository with npm format, simply create a new Hosted Repository and set the Provider
to npm as documented in Section 6.2. A sample configuration for an internal releases npm hosted reposi-
tory is displayed in Figure 17.2.

Welcome Repositories L
“% Refresh () Add...» (&) Delete i Trash...» [User Managed Repositories ~ npm (x]
Repository « Type Health Check Format Repository Path

npme-all group r 0 npm http:Mocalhost: B0B1 /nexus/content/groupa/npm-all

npm-internal hosted |] npm http:/Mocalhost:B0B1 /nexus/content/repositoriesin. ..

npmijs Regisiry proxy |- 5 npm http:/Mocalhost: 8081 /nexus/content/repositoriesin. ..

npm-internal
Configuration Summary
Repository ID
Repository Name npm-internal
Repository Type
Provider v
Format
Repository Policy hd
Default Local Storage Location

Override Local Storage Location

« | Access Settings

Deployment Policy Disable Redeploy ¥
Allow File Browsing True e
Include in Search v
Publish URL True a
Save Reset

Figure 17.2: Example Configuration for a Private npm Registry

The npm registry information is immediately updated as packages are deployed or deleted from the repos-
itory.

Repository Management with Nexus 331 /440

Warning
Browsing the registry storage or searching for packages is not supported.

The scheduled tasks to recreate the npm metadata database based on the components in a hosted repository
and to back up the database are documented in Section 6.5.

17.4 Grouping npm Registries

A repository group is the recommended way to expose all your npm registries repositories to your users,
without needing any further client side configuration. A repository group allows you to expose the ag-
gregated content of multiple proxy and hosted repositories with one URL to npm and other tools. This
is possible for npm repositories by creating a new Repository Group with the Provider set to npm as
documented in Section 6.3.

A typical, useful example would be to group the proxy repository that: proxies the npm registry, a npm,
hosted repository with internal software packages and another npm, hosted repository with third-party
packages. The configuration for such a setup is displayed in Figure 17.3.

Repository Management with Nexus 332/440

Welcome Repositories ¥
“ZRefresh () Add...» (2 Delete i Trash...» [User Managed Repositories + npm (x]
Repository « Type Health Check Format Repository Path

npme-all group r) npm hitp:fecalhost:B081/nexus/content/groups/npm-all
npm-internal hosted o npm http:focalhost:B0B1 inexus/content/repositoriesin. ..

npmijs Regisiry proxy " AMALY e npm http:Mocalhost:B081 /nexus/content/repositories/n. ..

npmi-all
Group 1D
Group Name npm-all
Provider v
Format
Publish URL True w
Ordered Group Repositories Available Repositories
5 npm-internal

=] npmijs Registry

Save Resat

Figure 17.3: An npm Group Combining the npm Registry and Two Private Registries

Using the Repository Path of the repository group as your npm repository URL in your client tool will
give you access to the packages in all three repositories with one URL. Any new packages added as well
as any new repositories added to the group will automatically be available.

17.5 Configuring npm

Once you have set up your hosted and proxy repositories for npm packages, and created a repository
group to merge them, you can access them with the npm tool on the command line as one registry.

You can configure the registry used by npm in your . npmrc file located in your user’s home directory.
If the file does not exist simply create it and add the registry configuration with the URL of your npm
repository group. You can see the public URL of your group repository in the repository list in the
Repository Path column.

Registry configuration in .npmrc

Repository Management with Nexus 333 /440

registry = http://localhost:8081/nexus/content/groups/npm-all/

With this configuration any npm commands will use the new registry from the repository manager. The
command line output will reference the URLs in ——verbose mode or with info logging for the down-
loads of the requested packages:

$ npm --loglevel info install grunt

npm http fetch GET http://localhost:8081/repository/npmjs—org/grunt/—-/ <«
grunt-0.4.5.tgz

npm http fetch 200 http://localhost:8081/repository/npmjs-org/grunt/-/
grunt-0.4.5.tgz

npm http fetch GET http://localhost:8081/repository/npm-all/underscore/-/
underscore-1.7.0.tgz

npm http fetch 200 http://localhost:8081/repository/npm-all/underscore/-/
underscore-1.7.0.tgz

By default any anonymous user has read access to the repositories and repository groups. If desired, the
repository manager can be configured to require authentication by adding always—auth=true to the
.npmrc file and adding the encoded authentication details as documented in Section 17.6.

17.6 Publishing npm Packages

Publishing your own packages to a npm hosted repository allows you to share packages across your
organization or with external partners.

The npm publish command uses a registry configuration value to know where to publish your pack-
age. There are several ways to change the registry value to point at your hosted npm repository.

Since the . npmrc file usually contains a registry value intended only for getting new packages, a simple
way to override this value is to provide a registry to the publish command:

npm publish --registry http://localhost:8081/nexus/content/repositories/
npm-internal/

Alternately, you can edit your package.json file and add a publishConfig section:

"publishConfig" : {

Repository Management with Nexus 334 /440

"registry" : "http://localhost:8081/nexus/content/repositories/npm- <
internal/"

}y

Publishing requires authentication. It can be configured by adding an _auth value to .npmrc. The
value has to be generated by base64-encoding the string of username : password. You can create this
encoded string with the command line call openss1 e.g.: for the default admin user:

echo -n ’"admin:adminl23’ | openssl base64

Other tools for the encoding are uuencode or, for Windows users, certutil. Touse certutil on
Windows you need to put the credentials to be encoded into a file:

admin:adminl23

Then run:

c:\certutil /encode in.txt out.txt

After this the base64 encoded credentials can be found in between the begin and end certiicate lines in
the output file:

Once you have the encoded credentials the value as well as author information can then be added to the .
npmrc file:

init.author.name = Jane Doe

init.author.email = jane@example.com
init.author.url = http://blog.example.com

an email is required to publish npm packages
email=jane@example.com

always—auth=true

_auth=YWRtaW46YWRtaW4xMjM=

Tip

Whatever tool you use to generate the encoded username and password string, try to encode the string
admin:adminl2 3, which should resultin YWRt aW4 6 YWRt aW4 xM jM=. Another example for a valid
setup is jane:testpasswordl23 resulting in amFuzTp0ZXNOcGFzc3dvemQxMjM=.

Repository Management with Nexus 335/440

With this configuration you can run npm publish for your package. More information about package
creation can be found on the npm website.

Once a package is published to the private registry in the repository manager, any other developers or
build servers, that access it via the repository group have instant access to the packages.

https://www.npmjs.org/doc/cli/npm-publish.html

Repository Management with Nexus 336 / 440

Chapter 18

Ruby, RubyGems and Gem Repositories

Available in Nexus Repository Manager OSS and Nexus Repository Manager

18.1 Introduction

For developers using the Ruby programming language, the gem tool serves as their package management
solution. In fact, since version 1.9 of Ruby, it has been included as part of the default Ruby library.
Packages are called gems and, just like all package managers, this allows for ease of use when distributing
programs or libraries.

Of course, package management really only goes as far as improving distribution. A great feat certainly,
but to really find success, a development community needs to exists. At the heart of every development
community, especially those like Ruby, where open source projects are one of the most critical elements,
the community needs a place to host and share their projects.

Enter RubyGems hosted at rubygems.org - the most popular and leading gem hosting service supporting
the Ruby community. Here, a large variety of open source Ruby projects supply their gems for download
to all users.

Ruby has been a successful platform for developers for a long time now. The popularity of Ruby and
therefore the usage of gems and Gem repositories means that lots of teams are downloading and exchang-

https://www.ruby-lang.org
https://rubygems.org

Repository Management with Nexus 337 /440

ing lots of components on a regular basis. Obviously, this can (and does) become a crunch on resources,
not to mention a pain to manage.

Luckily Nexus Repository Manager and Nexus Repository Manager OSS support Gem repositories. A
user can connect to the repositry manager to downloads gems from RubyGems, create proxies to other
repositories, and host their own or third-party gems. Any gem downloaded via the repository manager
needs to be downloaded from the remote repository, like RubyGems, only once and is then available
internally from the repository manager. Gems pushed to the repository manager automatically become
available to everyone else in your organization. Using the repository manager as a proxy avoids the over-
head of teams and individual developers having to repeatedly download components or share components
in a haphazard and disorganized manner.

® Important
Gem repository support is a feature of version 2.11 and higher, and is available in Nexus Repos-
itory Manager and Nexus Repository Manager OSS editions.

The following features are included as part of the Gem repository support:

* Proxy repository for connecting to remote Gem repositories and caching gems on the repository man-
ager to avoid duplicate downloads and wasted bandwidth and time

» Hosted repository for hosting gems package and providing them to your users

* Repository groups for merging multiple hosted and proxy Gem repositories and easily exposing them
as one URL to all users

Tip
None of this functionality requires Ruby (or any extra tooling) to be installed on the operating system
running the repository manager. Ruby specific details are implemented using a bundled JRuby.

18.2 Proxying Gem Repositories

To reduce duplicate downloads and improve download speeds for your developers, continuous integra-
tion servers and other systems using gem, you should proxy the RubyGems repository and any other
repositories you require.

http://jruby.org/

Repository Management with Nexus 338 /440

To proxy an external Gem repository, like RubyGems, simply create a new Proxy Repository as docu-
mented in Section 6.2. The Provider has to be set to Rubygems. The Remote Storage Location has to be
set to the URL of the remote repository you want to proxy. The official URL for Rubygems.org is

https://rubygems.org

This main configuration for proxying RubyGems is visible in Figure 18.1. Further configuration details
are available in Section 6.2.

Welcome Licensing Repositories %
“Z Refresh () Add...~ (@) Delete [Trash...~ [User Managed Repositories »
Repository - Type Format Repository Path
Releases hosted maven2 http:flocalhost:B081 /nexus/content/repositories/releases

RubyGems.org proxy rubygems http:/ocalhost:BOB1 /nexus/content/repositories/rubygems-org
Site Internal hosted site http:flocalhost:B081/nexus/content/sites/site-<internal

Cmmmnbntn P
RubyGems.org
Configuration Health Check || S5L Smart Praxy Summary

Repository IDr
Repository Name RubyGems.org
Repository Type
Provider w
Format
Repository Policy d
Default Local Storage Location
Override Local Storage Location
+ | Remote Repository Access

Remote Storage Location https://rubygems.org

Save Reset

Figure 18.1: Proxy Gem Repository Configuration for RubyGems

If you are using Nexus Repository Manager and are proxying a repository via HTTPS, you can get the
certificate added to the repository manager truststore to simplify management using the SSL tab of the
repository configuration.

Scheduled tasks can be used to purge broken metadata of a proxy gem repository as well as to synchronize
the metadata files of a proxy gem repository.

Repository Management with Nexus 339 /440

18.3 Private Hosted Gem Repositories

A private Gem repository on repository manager can be used as target to push your own gems as well as
third-party gems and subsequently provide them to your users. It is good practice to create two separate
hosted Gem repositories for internal and third-party gems.

To create a hosted Gem repository, simply create a new Hosted Repository and set the Provider to Rub
ygems as documented in Section 6.2. A sample configuration for an internal hosted Gem repository is

displayed in Figure 18.2.

Welcome Licensing Repositories a
“Z Refresh () Add...~ (@) Delete [5 Trash...~ [User Managed Repositories~ rubyg]
Repository - Type Format Repository Path
Gems All group rubygems hitp:flocalhost:B0G1/nexus/content'groups/gems-all
Gems Internal hested rubygems hitp:/Miocalhost:BOB1/nexus/content/repesitories/ge ms-internal
Gems Thirdparty hosted rubygems hittp:flecalhost:B0681/nexus/content/repositories/ge ms-third party

Ruhaname men oL ruhumamme httre Macalhact ANRY fnaviie icantant! ranoc
Gems Internal

Configuration Smart Proxy Summary

Repository ID

Repository Name Gems Internal

Repository Type

Provider v
Format

Repository Policy R

Default Local Storage Location

Override Local Storage Location

Save Resat

Figure 18.2: Example Configuration for a Private Gem Repository
The Gem repository information is immediately updated as gems are pushed to the repository or deleted
from it.

A scheduled task can be used to rebuild the metadata of a hosted gem repository and can be configured as
documented in Section 6.5.

Repository Management with Nexus 340 /440

18.4 Grouping Gem Repositories

A repository group is the recommended way to expose all your Gem repositories to your users, without
needing any further client side configuration after initial setup. A repository group allows you to expose
the aggregated content of multiple proxy and hosted Gem repositories with one URL to gem and other
tools. This is possible for Gem repositories by creating a new Repository Group with the Provider set to
Rubygems as documented in Section 6.3.

A typical, useful example would be to group the proxy repository that proxies the RubyGems repository,
a hosted Gem repository with internal software gems, and another hosted Gem repository with third-party
gems. The configuration for such a setup is displayed in Figure 18.3.

Welcome Licensing Repositories L
“Z Refresh () Add...~ (@ Delete {f§ Trash...~ [User Managed Repositories ~ rubyg (]
Repository « Type Format Repository Path
Gems All group rubygems hittp:flocalhost:B081/nexus/content/groups/gems-all
Gems Intermnal hosted rubygems hittp:flocalhost:B081/nexus/content/repositories/gems-internal
Gems Thirdparty hosted rubygems http:flocalhost:B081/nexus/content/repositories/gems-third party
RubkidZames arn AL ALY hettr 00, I AN fman i i i frusimanne e
Gems All

Configuration Smart Proxy

Group ID

Group Name Gems All

Provider ¥
Format

Publish URL True v

Ordered Group Repositories Available Repositories

5 Gems Inemal
=] Gems Thirdparty
5 RubyGems.ong

Save Reset

Figure 18.3: A Gem Repository Group Combining the RubyGems Proxy Repository and Two Private
Gem Repositories

Using the Repository Path of the repository group as your Gem repository URL in your client tool gives
you access to the gems in all three repositories with one URL.

Repository Management with Nexus 341 /440

Any new gem added to the remote proxy Gem repositories or the hosted Gem repositories becomes
immediately available to all users of the Gem repository group. Adding a new proxy Gem repository to
the group makes all gems immediately available to the users as well.

18.5 Using Gem Repositories

Once you have configured the repository manager with the Gem repository group, you can add it to your
configuration for the gem command line tool.

You can add the URL gems repository or better the Gem repository group using the Repository Path from
the repository list with a command like

gem sources —-—-add http://localhost:8081/nexus/content/groups/gems—all/

In order to take full advantage of the repository manager and the proxying of gems, you should remove
any other sources. By default https://rubygems.org/ is configured and this can be removed with

$ gem sources --remove https://rubygems.org/
https://rubygems.org/ removed from sources

Subsequently you should clear the local cache with

$ gem sources -c
**%* Removed specs cache #*#*x*

To check a successful configuration you can run

$ gem sources
*x% CURRENT SOURCES *x*x*

http://localhost:8081/nexus/content/groups/gems—all/

With this setup completed any installation of new gems with gem install GEMNAME e.g., gem in
stall rake will download from the repository manager.

By default read access is available to anonymous access and no further configuration is necessary. If your
repository manager requires authentication, you have to add the Basic Auth authentication details to the
sources configuration:

Repository Management with Nexus 342 /440

$ gem sources —--add
http://myuser:mypassword@localhost:8081/nexus/content/repositories/gems— <
all/

If you are using the popular Bundler tool for tracking and installing gems, you need to install it with gem:

$ gem install bundle

Fetching: bundler-1.7.7.gem (100%)
Successfully installed bundler-1.7.7
Fetching: bundle-0.0.1l.gem (100%)
Successfully installed bundle-0.0.1

Parsing documentation for bundle-0.0.1
Installing ri documentation for bundle-0.0.1
Parsing documentation for bundler-1.7.7
Installing ri documentation for bundler-1.7.7
Done installing documentation for bundle, bundler after 4 seconds
2 gems installed

To use the repository manager with Bundler, you have to configure the Gem repository group as a mirror:

$ bundle config mirror.http://rubygems.org
http://localhost:8081/nexus/content/repositories/gems—-all

You can confirm the configuration succeeded by checking the configuration:

$ bundle config

Settings are listed in order of priority.

The top value will be used.

mirror.http://rubygems.org

Set for the current user (/Users/manfred/.bundle/config):
"http://localhost:8081/nexus/content/repositories/gems—all"

With this configuration completed, you can create a Gemfile and run bundle install as usual and
any downloads of gem files will be using the Gem repository group configured as a mirror.

18.6 Pushing Gems

At this point you have set up the various Gem repositories on the repository manager (proxy, hosted, and
group), and are successfully using them for installing new gems on your systems. A next step can be to

http://bundler.io/

Repository Management with Nexus 343 /440

push gems to hosted Gem repositories to provide them to other users. All this can be achieved on the
command line with the features of the nexus gem.

The nexus gem is available at RubyGems and provides features to interact with Nexus Repository Man-
ager including pushing gems to a hosted Gem repository including the necessary authentication.

You can install the nexus gem with

$ gem install nexus
Fetching: nexus-1.2.1l.gem (100%)

Successfully installed nexus-1.2.1

Parsing documentation for nexus-1.2.1
Installing ri documentation for nexus-1.2.1
Done installing

After successful installation you can push your gem to a desired repository. The initial invocation will
request the URL for the GEM repository and the credentials needed for deployment. Subsequent pushes
will used the cached information.

$gem nexus example-1.0.0.gem

Enter the URL of the rubygems repository on a Nexus server

URL: http://localhost:8081/nexus/content/repositories/gems—internal
The Nexus URL has been stored in ~/.gem/nexus

Enter your Nexus credentials

Username: admin

Password:

Your Nexus credentials has been stored in /Users/manfred/.gem/nexus
Uploading gem to Nexus...

Created

By default pushing an identical version to the repository, as known as redeployment, is not allowed in a
hosted Gem repository. If desired this configuration can be changed, although we suggest to change the
version for each new deployment instead.

The nexus gem provides a number of additional features and parameters. You can access the documen-
tation with

$ gem help nexus

E.g. you can access a list of all configured repositories with

$gem nexus --all-repos

Repository Management with Nexus 344 /440

DEFAULT:
http://localhost:8081/nexus/content/repositories/gems-internal

Repository Management with Nexus 345/ 440

Chapter 19

RPM Packages and YUM Repositories

Available in Nexus Repository Manager OSS and Nexus Repository Manager

19.1 Introduction

RPM packages and the RPM package manager solution yum are used as the default application package
manager on Linux based operating systems such as Red Hat, CentOS, Fedora, Oracle Linux, SUSE,
openSUSE, Scientific Linux and others.

The yum repository support of Nexus Repository Manager and Nexus Repository Manager OSS allows
you to expose RPM packages hosted in a Maven repository in the yum repository format. It generates the
yum metadata, so that systems with yum support can use the repository manager as a software package
repository.

This enables a build and deployment pipeline for Java or other JVM-based applications via Maven repos-
itories to Linux computers. E.g., a Java Enterprise Archive (EAR) or Web Archive (WAR) or some other
application is deployed to a Maven repository. The deployment is performed by a CI server build using
Maven or other build systems or as a manually run deployment. Once the repository manager hosts the
application RPM package, it can be retrieved via yum for installation and updates on testing and produc-
tion systems. The metadata of the RPM package can additionally trigger installation of other required
packages including e.g. a Java runtime or an application server.

http://www.rpm.org/
http://yum.baseurl.org/
http://www.redhat.com/
http://www.centos.org/
https://getfedora.org/
http://www.oracle.com/us/technologies/linux/overview/index.html
https://www.suse.com/
http://www.opensuse.org/
https://www.scientificlinux.org/

Repository Management with Nexus 346 / 440

19.2 Installation and Requirements

Yum support is bundled with Nexus Repository Manager and Nexus Repository Manager OSS and no
further installation steps are required. It relies on the commands createrepo and mergerepo to be
installed on the operating system running the repository manager server and to be available on the path.
Documentation about these commands can be found on the createrepo website. Typically createrepo
is installed on RPM-based Linux distributions and as such they are suitable to run the repository manager
with yum support. If desired the path to the commands can be configured in the user interface.

If your RPM-based system does not have this command you can install it by running

yum install createrepo

with a sufficiently privileged user.

19.3 Configuration

Yum related configuration is done with the Capabilites management documented in Section 6.6.

The capability Yum: Configuration allows you to enable or disable yum support. It can only be enabled
successfully, if the createrepo and the mergerepo commands can be found by the repository manager.
By default it will look for them on the path. The configuration settings Path of "createrepo” and Path of
"mergerepo” allow you to alternatively configure a specific absolute path.

The parameter Max number of parallel threads defaults to ten and defines how many threads can be used
to manage the yum repositories with the createrepo and the mergerepo commands.

You need to ensure that this capability is enabled, before proceeding with your repository specific configu-
ration. The Status tab of the capability displays the detected versions for createrepo andmergerepo
and details any problems as applicable.

http://createrepo.baseurl.org/

Repository Management with Nexus 347 /440

19.3.1 Configure Hosted Yum Repositories

To expose a Maven repository like Releases via yum, press the New button in the capabilities configuration
tab and select Yum: Generate Metadata from the Type drop down in the dialog displayed in Figure 19.1.

Create new capability

Type: Yum: Generate Metadata b4

« | About

Generates Yum metadata for all deployed RPMs.

Settings

Enabled ™

Repository Releases e
Aliases

Process deletes ™

Delete process delay 10

Yum groups definition ||
file

Figure 19.1: Yum Configuration for the Hosted Releases Repository

The Repository drop down allows you to select the hosted Maven repository. Release as well as snap-
shot policy repositories can be configured. Once configured, any RPM package added to the hosted
Maven repository is available via yum. The same URL of the repository used for Maven based access
e.g.,http://localhost:8081/nexus/content/repositories/releases and displayed
in the repository administration area list, can be used as the URL for a yum repository in the yum config-
uration.

The yum integration supports versioned views on a repository. The URL http://localhost:8081/
nexus/service/local/yum/repos/releases/1.2.3/ exposesayum repository with all pack-
ages with version 1.2.3 in the releases repository. A custom repodata folder is available at the
context.

The Aliases field can be used to define alternative access paths to specific versions. For example, you can
configure alias values of

Repository Management with Nexus 348 /440

production=1.2,testing=2.0

These values would in turn expose the version 1.2 under a URL like http://localhost:8081/
nexus/service/local/yum/repos/releases/production/ andthe version 2.0 athttp:
//localhost:8081/nexus/service/local/yum/repos/releases/testing/. Using
these URLs in the yum configuration on the target servers as a static URL enables upgrades to new
versions by simply changing the alias e.g. to production=1.3 and running a yum update command
on the target server.

Besides maintaining the aliases in the capability administration, it is possible to create or update an alias
in the command line:

curl -d "1.0" --header "Content-Type: text/plain" http://localhost:8081/
nexus/service/local/yum/alias/releases/development/

Usage of the alias-based URL is done via the normal yum configuration e.g. with a file /etc/yum.
repos.d/nexus-production. repo and the following content:

[nexus—-production]

name={pro}duction Repository

baseurl=http://localhost:8081/nexus/service/local/yum/repos/releases/ ¢
production/

enabled=1

protect=0

gpgcheck=0

metadata_expire=30s

autorefresh=1

type=rpm-md

Promote RPM through Stages

By deploying new versions and switching alias associations to the versions, a controlled roll out of new
versions of RPM archives to target servers can be achieved.

The configuration options Process deletes and Delete process delay can be used to enable updates to the
yum metadata, following delete operations of rpm packages in the Maven repository.

The Yum groups definition file configuration allows you to configure a path to a package groups configu-
ration file. This file is typically named comps.xml and can be used to define a group of RPM packages.
The groups can then be managed with commands such as yum grouplist, yum groupinstall
and yum groupremove.

Once the capability is saved, the Status tab displays an example yum configuration for accessing the repos-

Repository Management with Nexus 349/ 440

itory. Each RPM deployed to the repository causes the repository manager to update the yum metadata
immediately.

The metadata used by yum is available in the repodata context e.g., at .../nexus/content/
repositories/releases/repodata, in the following files. Apart from the repomd.xml file,
the files are prepended with a unique hash value as part of the name to avoid caching issues:

repomd.xml
This XML file contains information about the other metadata files.

hash-primary.xml.gz
This zipped XML file describes the primary metadata of each RPM archive in the repository.

hash-filelists.xml.gz
This zipped XML file describes all the files contained within each RPM archive.

hash-other.xml.gz
This zipped XML file contains further, miscellaneous information regarding each RPM archive.

19.3.2 Proxying Repositories

The yum integration is able to proxy yum-enabled Maven repositories from remote Nexus Repository
Manager servers. The metadata in these repositories contains absolute URLs, which will cause yum to
use these URLs. The capability Yum: Proxy Metadata can be configured on such a proxy repository. It
will cause the URLSs in the metadata to be rewritten and corrected for the current repository manager.

This allows the proxy repositories to be part of a repository group and expose the correct yum metadata
via the merged metadata creation on the group.

19.3.3 Configure Repository Group for yum

To expose a Maven repository group to yum, simply add a new capability with the type Yum: Merge
Metadata and select the repository group in the Group drop down. Figure 19.2 shows the Settings tab for
the Public Repositories configured for yum.

Repository Management with Nexus 350 /440

[Q Yum: Merge Metadata - Public Repositories

Summary Settings Status | About

Enabled ™
Group Public Repositories =
Save Discard

Figure 19.2: Yum Configuration for the Hosted Releases Repository

This configuration causes the repository manager to merge the yum metadata of all repositories in the
repository group. Metadata generation has to be configured for the individual repositories desired to be
exposed as part of the group. The URL of the repository group, can now be used as the URL for a yum
repository in the yum configuration, since the same metadata files are being maintained and exposed via
the repodata context like in a hosted repository.

19.3.4 Scheduled Tasks

The yum support includes a scheduled task called Yum: Generate Metadata that can be run to generate
yum metadata with createrepo for a specific repository.

Typically this task does not need to be run, however it can be useful when RPM files already exist in
a repository or are deployed in some external mode that requires a manually triggered update of the
metadata.

The Optional Output Directory parameter can be used to get the metadata created in a different folder
from the default repo-data in repository root.

The parameter Single RPM per directory is activated by default and causes the task to take only one RPM
file per directory in the Maven repository into account when creating the yum metadata.

The Full Rebuild parameter can be activated to force the repository manager to traverse all directories in
the repository in order to find the RPM files that need to taken into account for the metadata creation.
This option is off by default and causes the repository manager to take the existing metadata cache as a
basis for the update.

Repository Management with Nexus 351 /440

19.4 Example Usages

The component upload to a hosted repository allows you to publish any RPM file to a Maven repository
and subsequently expose it via the yum integration. This is a basic use case, that can be used to e.g.,
exposed third-party supplied RPM archives. The more advanced setup involves a Maven project that
creates the RPM as detailed in this section.

The RPM Maven Plugin can be used to create an RPM package of a Java application and attach it as a
secondary built component with the attached-rpm goal. An example plugin configuration for a war
project can be found in [?simpara].

If your project includes a distributionManagement for the releases repository, a build with
mvn clean deploy,causesthe war as well as the rpm file to be uploaded to the repository. With yum
configured for the releases repository , the RPM package can be consumed by any server configured
to access the repository with yum.

Maven pom.xml snippet for configuring and attaching an RPM

<pbuild>
<plugins>
<plugin>
<groupld>org.codehaus.mojo</groupIld>
<artifactId>rpm-maven-plugin</artifactId>
<version>2.1</version>
<executions>
<execution>
<id>build-rpm</id>
<goals>
<goal>attached-rpm</goal>
</goals>
</execution>
</executions>
<configuration>
<group>Applications/Internet</group>
<copyright>EPL</copyright>
<requires>
<require>tomcat8</require>
</requires>
<mappings>
<mapping>
<directory>/var/lib/tomcat8/webapps/${project.build.finalName <
}</directory>
<sources>
<source>
<location>${project.build.directory}/${project.build. ¢

http://mojo.codehaus.org/rpm-maven-plugin/

Repository Management with Nexus 352 /440

finalName}</location>
</source>
</sources>
</mapping>
</mappings>
</configuration>
</plugin>

Now that the repository manager hosts a RPM package with your Java web application in a yum repos-
itory, you can configure yum on the target server to retrieve it for installation. You have to configure
yum to include the repository as a package source. Depending on your specific Linux distribution, file
paths and tools for this configuration will differ. A typical example would be to create a new file e.g.
nexus.repoin /etc/yum.repos.d. A sample configuration for the public group can be found
in Example yum source repository configuration.

Example yum source repository configuration

[nexus—-public]

name=Nexus Releases Repository
baseurl=http://yournexusserverhost/nexus/content/groups/public
enabled=1

protect=0

gpgcheck=0

metadata_expire=30s

autorefresh=1

type=rpm-md

Once the configuration is added you can install or update any RPM packages from the repository manager
as usual with yum install <packagename> or yum update <packagename>. Thisincludes
any required dependencies like a servlet container or a Java runtime as declared in the RPM Maven Plugin
configuration and therefore the RPM/yum metadata.

19.5 Staging with RPMs

Available in Nexus Repository Manager only

The Staging Suite of Nexus Repository Manager can be used with yum repositories allowing you to
optimize the release process for your RPM packages.

Repository Management with Nexus 353 /440

The capability Yum: Staging Generate Metadata allows you to configure yum for a Staging Profile. Any
staging repository created from a deployment via the staging profile is then automatically configured
as a yum repository. The Aliases configuration allows for the same mechanism as the capability Yum:
Generate Metadata documented earlier.

The capability Yum: Staging Merge Metadata can be used to configure yum metadata creation for a build
promotion profile and the attached repository groups.

If a staging repository or build promotion repository is configured for yum metadata generation and ex-
posed via a repository group that is configured for yum metadata merging, the metadata from staging will
be merged appropriately.

Repository Management with Nexus 354 /440

Chapter 20

Site Repositories

Available in Nexus Repository Manager OSS and Nexus Repository Manager

20.1 Introduction

Nexus Repository Manager and Nexus Repository Manager OSS include a repository provider for hosting
static websites - the Site format. Hosted repositories with this format can be used to hold a Maven-
generated website. This chapter details the process of configuring a site repository and configuring a
simple Maven project to publish a Maven-generated project site to the repository manager.

20.2 Creating a New Maven Project

In this chapter, you will be creating a simple Maven project with a simple website that will be published
to a Site repository. To create a new Maven project, use the archetype plugin’s archetype:generate
goal on the command line, and supply the following identifiers:

 groupld: org.sonatype.books.nexus

* artifactld: sample-site

Repository Management with Nexus 355/ 440

e version: 1.0-SNAPSHOT

* package: org.sonatype.books.nexus

~/examples$ mvn archetype:generate

[INFO] [archetype:generate {execution: default-cli}]
[INFO] Generating project in Interactive mode
Choose archetype:

1: internal -> appfuse-basic-jsf

13: internal -> maven-archetype-portlet (A simple portlet application)
14: internal -> maven-archetype-profiles ()

15: internal -> maven-archetype-—-quickstart ()

Choose a number: (...14/15/16...) 15: : 15

Define value for groupId: : org.sonatype.books.nexus

Define value for artifactId: : sample-site

Define value for version: 1.0-SNAPSHOT: : 1.0-SNAPSHOT

Define value for package: org.sonatype.books.nexus: : org.sonatype.books. ¢
nexus

Confirm properties configuration:
groupld: org.sonatype.books.nexus
artifactId: sample-site

version: 1.0-SNAPSHOT

package: org.sonatype.books.nexus

Y: :

[INFO] Parameter: groupld, Value: org.sonatype.books.nexus
[INFO] Parameter: packageName, Value: org.sonatype.books.nexus
[INFO] Parameter: package, Value: org.sonatype.books.nexus
[INFO] Parameter: artifactId, Value: sample-site

]
]
1
]
[INFO] Parameter: basedir, Value: /private/tmp
1
]
]
1

[INFO] Parameter: version, Value: 1.0-SNAPSHOT

[INFO] OldArchetype created in dir: /private/tmp/sample-site

[INFO] m=——————————— e e e e e e e e e e e e e e e e
[INFO] BUILD SUCCESSFUL

After running the archetype:generate command, you will have a new project in a sample-site/
subdirectory.

20.3 Configuring Maven for Site Deployment

To deploy a site to a Sife repository, you will need to configure the project’s distribution management
settings, add site deployment information, and then update your Maven settings to include the appropriate

Repository Management with Nexus 356 / 440

credentials for the repository manager.

Add the following section to sample-site/pom.xml before the dependencies element. This section will tell
Maven where to publish the Maven-generated project website:

Distribution Management for Site Deployment

<distributionManagement>
<site>
<id>nexus</id>
<url>dav:http://localhost:8081/nexus/content/sites/site/</url>
</site>
</distributionManagement>

The URL in the distribution management does not change with the project versions automatically, which
means that any redeployment overwrites old content and potentially leaves old stale files behind. To have
a new deployment directory for each version, change the URL to a parameterized setup or a hardcoded
specific URL for your project version.

If you combine this approach with a redirector or a static page that links to the different copies of your site,
you can e.g., maintain separate sites hosting your javadoc and other documentation for different releases
of your software.

The dav protocol used by for deployment to the repository manager requires that you add the implement-
ing library as a dependency to the Maven site plugin configuration.

Configuring Version 3.4 of the Maven Site Plugin with DAV support

<build>
<plugins>
<plugin>
<artifactId>maven-site-plugin</artifactId>
<version>3.4</version>
<dependencies>
<dependency>
<groupld>org.apache.maven.wagon</groupld>
<artifactId>wagon-webdav-jackrabbit</artifactId>
<version>2.6</version>
</dependency>
</dependencies>
</plugin>
</plugins>
</build>

Repository Management with Nexus 357 /440

20.4 Adding Credentials to Your Maven Settings

When the Maven Site plugin deploys a site to a repository, it needs to supply the appropriate deploy-
ment credentials. To configure this, you need to add credentials to your Maven Settings. Open up your
~/.m2/settings.xml and add the following server configuration to the servers element.

Configuring Deployment Credentials for Site Deployment

<settings>
<servers>
<server>
<id>nexus</id>
<username>deployment</username>
<password>deployment123</password>
</server>
</servers>
</settings>

Note

Configuring Deployment Credentials for Site Deployment uses the default deployment user and the
default deployment user password. You will need to configure the username and password to match the
values expected by your repository manager.

20.5 Creating a Site Repository

To create a site repository, log in as a user with Administrative privileges, and click on Repositories under
Views/Repositories in the mainmenu. Under the Repositories tab, click on the Add... drop-down and
choose Hosted Repository as shown in Figure 20.1.

Repository Management with Nexus

358 /440

Repositories

Repository 4
Codehaus 5
Maven Site

Releases

Hosted Repository
Proxy Repository

Virtual Repository

Repository Group

Format

maven2

site

e

maven2

2 Refresh [() Add... ~ (&) Delete ﬁTrash... » |7 User Managed Repasitories +

Palicy
Snapshot
Mixed

Release

Reposito...

In Service
In Service

In Service

Figure 20.1: Adding a Hosted Repository

In the New Hosted Repository form, click on the Provider drop-down and chose the Site provider as shown
in Figure 20.2. Although you can use any arbitrary name and identifier for your own repository, for the
chapter’s example, use a Repository ID of site and a Repository Name of Maven Site.

Repository ID

Repository Type
Pravider

Format

MNew Hosted Repository

Repository Name

Default Local Storage Location
Owerride Local Storage Location

Save

site

Mawven Site

Site
Mavenl
Maven2
Site

‘ Cancel

Figure 20.2: Creating a New Maven Site Repository

After creating a new Site repository, it should appear in the list of repositories as shown in Figure 20.3.
Note that the Repository Path shown in Figure 20.3 is the same as the repository path referenced in
Distribution Management for Site Deployment.

Repository Management with Nexus 359 /440

Welcome Repositories %
2, Refresh () Add...~ (&) Delete ﬁTrash...v | "|User Managed Repositories =

Repository - Type Health Check Format Policy Repository Sta... Repository Path

JBoss Releases proxy ' 0 ﬁ 0 maven2 Release In Service hitp:iflocalhost:B081/nexus/contentreposito. ...
Maven Site hosted site Mixed In Service hitpi/fiocalhost:8081/nexus/content/sites/site
MuGet Relea... hosted nugat In Service hitp:iflocalhost:B081/nexus/contentreposito. ...

Figure 20.3: Newly Created Site Repository

Tip
The Site provider support is implemented in the Nexus Site Repository Plugin and is installed by default
in Nexus Repository Manager OSS as well as Nexus Repository Manager.

20.6 Add the Site Deployment Role

In the Maven Settings shown in Configuring Deployment Credentials for Site Deployment, you configured
your Maven instance to use the default deployment user and password. To successfully deploy a site to
the repository manager, make sure that the deployment user has the appropriate role and permissions. To
add the site deployment role to the deployment user, click on Users under the Security section of the main
menu, and click on the Add button in the Role Management section. This will trigger the display of the
Add Roles dialog that will allow you to apply a filter value of site to locate the applicable roles as shown
in Figure 20.4.

Repository Management with Nexus

360/ 440

Add Roles

[[] Name =
|1 Repo: All Site Repesitories (Full Control)
epo! ite Repositories (Rea
R All Site: R itories (Read)
epo: ite Repositories (View,
R All Site: R itories (Wiew)

Page 1 of 1 EE‘

Filter: site Selected Only

Apply Filter | Reset Filter

Description
Gives access o create/read/update/delete ALL content of ALL Site R...
Gives access to read ALL content of ALL Site Repositories in Nexus.

Gives access fo view ALL Site Repositories in Nexus.

Displaying roles 1-3of 3

oK Cancel

Figure 20.4: Adding the Site Deployment Role to the Deployment User

Check the box beside the "Repo: All Site Repositories (Full Control)" role in the list and press OK in the
dialog. After the dialog closes, you should see the new role in the Role Management section. Click on
the Save button to update the roles for the deployment user. The deployment user now has the ability to

publish sites to a Maven site repository.

20.7 Publishing a Maven Site

To publish a site to a Site repository, runmvn site-deploy fromthe sample-site/ project created
earlier in this chapter. The Maven Site plugin will deploy this site to the repository manager using the

credentials stored in your Maven Settings.

~/examples/sample-site$ mvn site-deploy

[INFO] Scanning for projects...
[INFO] <~

[INFO] Building sample-site

]

]

] Generating "Project Team"
[INFO] Generating "Dependencies"

]

1

]

Generating "About" report.

Generating "Issue Tracking" report.

report.

report.
Generating "Project Plugins" report.
Generating "Continuous Integration" report.
Generating "Source Repository" report.

Repository Management with Nexus 361 /440

[INFO] Generating "Project License" report.

[INFO] Generating "Mailing Lists" report.

[INFO] Generating "Plugin Management" report.

[INFO] Generating "Project Summary" report.

[INFO] [site:deploy {execution: default-cli}]

http://localhost:8081/nexus/content/sites/site/ - Session: Opened

Uploading: ./css/maven-base.css to http://localhost:8081/nexus/content/ <
sites/site/

#http://localhost:8081/nexus/content/sites/site//./css/maven-base.css \
- Status code: 201

Transfer finished. 2297 bytes copied in 0.052 seconds
Uploading: ./css/maven-theme.css to http://localhost:8081/nexus/content/
sites/site/

#http://localhost:8081/nexus/content/sites/site//./css/maven-theme.css \
— Status code: 201

Transfer finished. 2801 bytes copied in 0.017 seconds

Transfer finished. 5235 bytes copied in 0.012 seconds
http://localhost:8081/nexus/content/sites/site/ - Session: Disconnecting
http://localhost:8081/nexus/content/sites/site/ - Session: Disconnected
[INFO] <

,, >

[INFO] BUILD SUCCESSFUL

[INFO] <
__ N

[INFO] Total time: 45 seconds

[INFO] Finished at: Sat Oct 03 07:52:35 CDT 2009

[INFO] Final Memory: 35M/80M

[INFO] ————————— oo

Once the site has been published, you can load the site in a browser by going to http://localhost:8081/-
nexus/content/sites/site/.

http://localhost:8081/nexus/content/sites/site/
http://localhost:8081/nexus/content/sites/site/

Repository Management with Nexus 362 /440

by () (5

ample-site - A 1
'-h 'l T‘:t, http:,fjIocalhost'.El]31.fnexusfcon[ent,'sllesfsite,‘ 1‘:}'7 ﬂ‘

sample-site

Last Published: 2009-10-03 sample-site @r

Project Documentation

- Projl.;e:tmllllfonnatlun About sam ple-site

Continuous Integration
Dependencies
E:HE?SEEHQ There is currently no description associated with this project.
Plugin Management
Project License E
Project Plugins
Project Summary
Project Team
Source Repository

Bulll by
maven

Figure 20.5: Sample Site Maven Project Website

Repository Management with Nexus 363 /440

Chapter 21

Repository Management Best Practises

Available in Nexus Repository Manager OSS and Nexus Repository Manager

21.1 Introduction

Once you decide to install a Nexus Repository Manager, the next decision is how to set up your reposi-
tories, particularly if you have multiple teams sharing the same instance. Nexus Repository Manager is
very flexible in this area and supports a variety of configurations. We first describe the options and then
discuss the thought process used to decide what makes sense for your organization.

21.2 Repositories Per Project/Team

The first and most obvious way to support multiple teams is to configure a pair of repositories per team
(one release, one snapshot). The team is then given the appropriate C.R.U.D. permissions, and they are
able to use the system for their components.

Repository Management with Nexus 364 /440

21.3 Partition Shared Repositories

Another option is to have a single pair (or a few pairs) of release and snapshot repositories for your entire
organization. In this case, the access is controlled by repository targets.

Simply put, a repository target is a way to manage a set of components based on their paths in a repository.
A repository target is simply a list of regular expressions and a name. For example, a repository target
pattern for Apache Maven would be ./org/apache/maven/. or for Nexus Repository Manager
OSS it would be . /org/sonatype/nexus/ ..

Note

While it is most common to manage components based on the path of their groupld, the Regular Ex-
pression is matched against the entire path, and so it is also possible, for example, to define Sources
as .x—sources. jar. ltis also worth noting that repository targets are not mutually exclusive. It is
perfectly valid for a given path to be contained by multiple targets.

In this model, you would create a repository target for each project in your system. You are then able to
take the repository target and associate it with one or more repositories or repository groups. This creates
new C.R.U.D. privileges specific to the reposiory or group. For example, you could take the Maven
repository target, associate it with the release and snapshot repository. You get privileges you can assign
to Create, Read, Update, Delete "Maven" (./org/apache/maven/.) components in the release and
snapshot repositories.

This method is used to manage the http://repository.apache.org instance, where we have just one release
and snapshot repository and each project team gets permissions to their components based on the path.

21.3.1 Selecting an Approach

First of all, these choices aren’t mutually exclusive. In fact, the first option builds upon the default
repository target of . » which simply gives you access to all components regardless of the path. You still
associate the default repository target with specific repositories to create the assignable privileges

In general, fewer repositories will scale better and are easier to manage. It’s also easier to start off with
a single pair of repositories with the default target and simply refine the permissions as you scale. Most
things that are configured per repository (Cache, Storage location, Snapshot purging, etc.) will generally

http://repository.apache.org

Repository Management with Nexus 365 /440

be applicable for all projects, so this mode avoids the duplication of these tasks. Since everything will be
stored together in a single folder on disk, it makes backups easier as well.

The reasons why you would want multiple sets of repositories is essentially the opposite of above: If
you need different expiration, snapshot purging, or storage folders, then a single shared repo won’t work.
Replication and failover strategies may also make this method easier to support. If you absolutely must
maintain total separation between project teams, i.e. they can’t read each other’s components, then this
solution might be more applicable as well.

In summary, Nexus Repository Manager allows you to control the security of your components based on
the repository and/or the path of the components, meaning it is possible to slice and dice the system any
way you see fit. The default suggestion is to use as few hosted repositories as possible and control the
permissions by using repository targets.

Repository Management with Nexus 366 / 440

Chapter 22

Nexus Repository Manager Plugins

Available in Nexus Repository Manager OSS and Nexus Repository Manager

Nexus Repository Manager OSS and Nexus Repository Manager are built using a plugin architecture,
where each version includes a different set of plugins. You can install plugins available from the open
source community, other vendors, or created by yourself in addition to the default plugins.

Plugins can provide further functionality for the backend such as support for new repository formats,
specific behavior for components, new scheduled tasks, new staging rules, and any other additional func-
tionality as well as new user interface components and modifications. They can also group a number of
these features together in one plugin.

22.1 Managing Plugins

All plugins supplied by Sonatype are installed as part of the default configuration and can be found in
SNEXUS_HOME/nexus/WEB-INF/plugin-repository. Most plugins are enabled by default.

Some plugins expose a capability as documented in Section 6.6 and can be enabled, disabled, and other-
wise configured in the capability administration. The branding plugin or the outreach plugin are examples
of plugins exposing capabilities.

Repository Management with Nexus 367 /440

Note

Prior to version 2.7 optional plugins, supplied by Sonatype, can be found in the directory
SNEXUS_HOME/nexus/WEB-INF/optional-plugins. To install any of these, simply
copy the folder containing the desired plugin into SNEXUS_HOME/nexus/WEB-INF/plugin-
repository. When updating the repository manager, redo the install of any optional plugins us-
ing the newest version shipping with the download of the new version. Any configuration of the plugin
will be preserved from one version to the other.

Plugins supplied by third parties or ones that you authored are installed by copying the folder with the
plugin code into sonatype-work/nexus/plugin-repository or extracting the plugin bundle
zip file in that folder.

After a restart of the repository manager, the new plugins will be active and ready to use. Upgrades are
done by shutting down the repository manager, copying the newer plugin into the folder, removing the
older one, and restarting it.

Capability-based plugins can be disabled in the capability administration. Otherwise, plugins can be
removed by deleting the respective folder in the plugin-repository and restarting.

22.2 Developing Plugins

Developing plugins allow you to customize and further enhance the repository manager beyond the fea-
tures and capabilities offered. This section provides you with the information to begin developing your
own plugins.

The preferred way to write plugins is to use Java as the implementation language and Apache Maven as
the build system. The Nexus Example Plugins project demonstrates a number of plugin examples for
Nexus Repository Manager OSS and Nexus Repository Manager. Further examples are the plugins of
Nexus Repository Manager OSS.

The easiest way to create a new plugin project is to replicate a plugin with a similar functionality from
these projects. The existing plugins and codebase should be used as examples for your own functionality.
Inspect the source code of plugins with similar functionality, and read the JavaDoc documentation for the
involved classes.

https://github.com/sonatype/nexus-example-plugins
https://github.com/sonatype/nexus-oss/tree/master/plugins
https://github.com/sonatype/nexus-oss/tree/master/plugins

Repository Management with Nexus 368 /440

Note
The Maven archetype nexus-archetype-quickstart is deprecated.

To gain access to all the components needed for your plugin development, you have to proxy the Sonatype
grid repository with the URL below:

https://repository.sonatype.org/content/groups/sonatype-public—-grid/

For some Nexus Repository Manager specific plugins, you might need access to the private grid. We
suggest that you work with the support team in this situation.

Set up your project to include inheriting from the parent of all the Nexus Repository Manager OSS plugins
with the version you are targeting as displayed in Inheriting from the nexus-plugins Parent.

Inheriting from the nexus-plugins Parent

<parent>
<groupld>org.sonatype.nexus.plugins</groupId>
<artifactId>nexus-plugins</artifactId>
<version>2.12.1-01</version>

</parent>

Warning

@ It is best to use the identical version of the parent as the Nexus Repository Manager instance
no which you want to run your plugin. When developing a plugin you are using large parts of
internals, which are subject to change from one version to another. This same logic applies to
any dependencies as well.

A plugin Maven project creates a custom build output file in the form of a zip file that contains all
dependencies, in addition to your class files and resources from your plugin and some metadata. Enable
this by changing the packaging and adding the bundle plugin listed in nexus-plugin Packaging.
nexus-plugin Packaging

<project>

<groupId>com.myorganization.nexus.plugins</groupId>

Repository Management with Nexus 369 /440

<artifactId>example-nexus-plugin</artifactId>
<version>1.0-SNAPSHOT</
<packaging>nexus-plugin</packaging>

<build>
<plugins>
<plugin>
<groupId>org.sonatype.nexus</groupld>
<artifactId>nexus-plugin-bundle-maven-plugin</artifactId>
<extensions>true</extensions>
</plugin>
</plugins>
</build>

Add the dependencies in Adding the Nexus Plugin API and Testsupport to your Maven project pom.xml
file, to access the Nexus Plugin API and test support.

Adding the Nexus Plugin API and Testsupport

<dependencies>
<dependency>
<groupId>org.sonatype.nexus</groupId>
<artifactId>nexus-plugin-api</artifactId>
<scope>provided</scope>
</dependency>
<dependency>
<groupld>org.sonatype.nexus</groupld>
<artifactId>nexus-plugin-testsupport</artifactId>
<scope>test</scope>
</dependency>
</dependencies>

These dependencies pull in a large number of transitive dependencies that expose Nexus Repository Man-
ager functionality and other libraries to your project. Depending on the type of plugin and functionality
you aim to create, additional dependencies and other details can be added to this minimal project setup.
A large number of further classes is available and can be used as part of your plugin development. Some
of these classes are contained in other plugins. If you want to use these, you have to add a dependency to
this plugin to your plugin’s pom.xml.

An example is a plugin you create that exposes a REST API for further integrations with tools outside of
the repository manager similar to how all other plugins expose a REST API. The dependency to add is
displayed in Adding a Dependency to the Nexus Siesta Plugin.

Adding a Dependency to the Nexus Siesta Plugin

Repository Management with Nexus 370/ 440

<dependency>
<groupId>com.sonatype.nexus.plugins</groupId>
<artifactId>nexus-siesta-plugin</artifactId>
<type>nexus-plugin</type>
<scope>provided</scope>

</dependency>

Nexus Repository Manager, Nexus Repository Manager OSS and plugins use JSR-330 annotations like
@javax.inject.Inject and the Google Guice dependency injection framework. Typical classes
are @Named and are often a @Singleton . Other components are typically injected via constructor
injection as displayed in the example from the virusscan example plugin in Constructor Injection.

Constructor Injection

@Inject
public VirusScannerRequestProcessor (final EventBus eventBus,
final List<VirusScanner> scanners)

this.eventBus = Preconditions.checkNotNull (eventBus) ;
this.scanners = Preconditions.checkNotNull (scanners);

Your Maven project setup should follow the typical standard directory layout conventions. In addition,
static resources such as JavaScript files, images, and CSS should be placed in src/main/resources/
static.

Once you have created your Maven project as described above, you can build the plugin with

mvn clean install

A successful build includes the creation of a x—bundle. zip file in the target folder. To install
your plugin into the repository manager you can extract it into the plugin-repository directory as
described in Section 22.1.

22.3 Summary

The Nexus Repository Manager architecture is largely based on plugins including the differentiation of
Nexus Repository Manager OSS and Nexus Repository Manager. By inspecting the example plugins and

Repository Management with Nexus 371/440

the Nexus Repository Manager OSS project, you can create additional functionality for yourself as well
as potentially share it with the user community.

Repository Management with Nexus 372/ 440

Chapter 23

Migrating to Nexus Repository Manager

Available in Nexus Repository Manager OSS and Nexus Repository Manager

If you have been running another repository manager, such as Artifactory, Archiva, or Proximity, and you
want to migrate this repository to Nexus Repository Manager or Nexus Repository Manager OSS, you
can do so by copying the files from a standard Maven 2 repository file layout to the storage.

Depending on your repository managers, you will have to use different approaches to get access to a
repository in Maven 2 format on disk.

Nexus Repository Manager and Nexus Repository Manager OSS store its components in standard Maven
2 layout, and they are served directly from disk, and can therefore be easily integrated into an existing
Nexus Repository Manager instance as a new hosted repository.

23.1 Migrating from Archiva

23.1.1 Introduction

This appendix walks you through the process of migrating an existing Archiva installation to a new Nexus
Repository Manager installation.

http://archiva.apache.org/

Repository Management with Nexus 373 /440

23.1.2 Migrating Archiva Repositories

Archiva uses the file system to store hosted repositories and proxied repositories, making migration from
Archiva to Nexus Repository Manager very simple. The following sections outline the process for mi-
grating existing Archiva repositories to a new Nexus Repository Manager instance.

23.1.3 Migrating an Archiva Managed Repository

Archiva Managed Repositories are the equivalent of hosted repositories. To migrate a Managed Reposi-
tory from Archiva to Nexus Repository Manager, do the following:

* Create a New Hosted Repository in Nexus Repository Manager.

* Copy the Contents of the Archiva Managed Repository to the Storage Directory of the newly-created
Hosted Repository.

* Rebuild the Index for the New Hosted Repository.

The following example will walk through the process of migrating the Archiva repository named inter
nal, to a new Hosted repository named "internal". To view your managed repositories in Archiva, login
to Archiva as an administrative user and click on the Repositories link in the left-hand navigation menu.
Clicking on Repositories will list all of your Archiva Managed repositories as shown in Figure 23.1.

Repository Management with Nexus

374 /440

AYL
TAY

Managed Repositories

% ad
Edit % pelete B)

=
(=1

Archiva Managed Internal Repository

Identifier
Name
Directory
WebDAV URL

Type

Releases Included
Snapshots Included
Scanned

Scanning Cron
Actions

Stats
POM Snippet

internal

Archiva Managed Internal Repository
.Jdata/repositories/internal

http://localhost: 8080/archiva/repository/internal/

Maven 2.x Repository
k

Q

[] 0 * * X ?

Scan Repository Now

Mo Statistics Available.
Show POM Snippet

Figure 23.1: Archiva Managed Repositories

To migrate this Managed repository to a Hosted repository, find the directory in which Archiva stores all
of the repository components. To do this, click on the Edit link listed next to the name of the repository
you want to migrate as shown in Figure 23.1. Clicking on Edit should load the form shown in Figure 23.2.

Repository Management with Nexus 375/440

Admin: Edit Managed Search for:

Repository

ID: internal
Name*. | Archiva Managed Internal Repository
Directory*: | _fdata/repositories/internal
Index Directory:
Type: | Maven 2.x Repository |
Cron*: oo *==7%

Repository Purge By Days Qlder
Than:

Repository Purge By Retention
Count:

30

Releases Included

[1 Snapshots Included k
Scannable

[] Delete Released Snapshots

Update Repository

Figure 23.2: Editing an Archiva Managed Repository

Take note of the file path for Directory. The file path shown in Figure 23.2 is /data/repositories/
internal. If Archiva is installed in /usr/local/archiva-1.2.1, it should correspond to the
directory /usr/local/archiva-1.2.1/data/repositories/internal. You will use this
path later in this section to copy the contents of your old Archiva Managed Repository to your new Hosted
Repository.

Next, create a new hosted repository in Nexus Repository Manager with the same identifier and Name
as the old Archiva Managed Repository. To do this, log into the user interface as an administrative user,
click on Repositories in the left-hand main navigation menu, and then click on the Add drop-down as
shown in Figure 23.3. Select "Hosted Repository" and then fill out the Repository ID and Repository
Name to match the name of the old Archiva repository. If you are migrating a Snapshot repository, select
a Repository Policy of Snapshot, and if you are migrating a Release repository select a Snapshot Policy
of Release.

Repository Management with Nexus

376 /440

Welcome

Repositories *

Repository
New Hoste
Eclipse Gn
Public Rep

Hosted Repository ‘{_h:'?
Proxy Repository
Virtual Repository

Repositery Group

b
il

o

Format = Policy

p2

maven2

Repaository ID

Provider

Format

New Hosted Repository

Repaository Name
Repaository Type

Repaository Policy
Default Local Storage Location
Override Local Storage Location

St

internal
Internal
@
Mawven2 Repository
@

Release | v %7

Cancel

2 Refresh | (@) Add...~ | (@ Delete [Trash...» [[7)User Managed Repositories+

Repository Status

Google's Eclipse Plugin, S 4
Releases, Snapshots, 3rd ¥

4| e

Figure 23.3: Creating a Hosted Repository

Now, you’ll need to copy the Archiva repository to the repository in the Nexus Repository Manager. You
can do this by copying the contents of the Archiva repository directory to the repository storage directory.
If we assume that Archiva is installed in /ust/local/archiva-1.2.1, Nexus Repository Manager is installed in
/usr/local/nexus, and the Sonatype Work directory is /usr/local/sonatype-work. You can copy the contents
of the Archiva managed repository to the new hosted repository by executing the following command:

$ cp -r /usr/local/archiva-1.2.1/data/repositories/internal/x \

/usr/local/sonatype-work/nexus/storage/internal/

If you are migrating to a repository manager instance on a different server, you can simply create an
archive of the /usr/local/archiva-1.2.1/data/repositories/internal directory, copy it to the new server, and
then decompress your repository archive in the appropriate directory.

Repository Management with Nexus 377 /440

Warning

Archiva stores components from proxied remote repositories in the same directory as compo-
nents in a managed repository. If you have been proxying a remote repository, you might want
to remove components that have been proxied from a remote repository. For example, if your
organization uses a groupld of org.company for internal project, you can make sure to only copy
the components under the corresponding org/companyy/.

Once the contents of the repository have been copied to the hosted repository, you must rebuild the
repository index as shown in Figure 23.4. Right-clicking on the repository in the list of repositories will
display the context menu shown in the following figure.

Welcome Repositories %

23, Refresh () Add...» (@) Delete ﬁTrash...v [User Managed Repositories~

Repository . Type Format = Policy Repository Status

Felix OBR Repository prowy obr release In Service m

Google's Eclipse Plugin proxy p2 release In Service ']

Internal awen2 release In Service v
Expire Cache
Re-Index

Internal
Rebuild Metadata

Browse Conf act Upload
% Refresh Path Lg Puk Ouk of Senvice
= Internal
H] .meta

Figure 23.4: Rebuilding the Index of a Hosted Repository

Once the migration is complete, you will be able to search and browse the contents of your newly migrated
hosted repository.

23.1.4 Migrating an Archiva Proxy Connector

Archiva allows you to define remote repositories and repository connectors to proxy remote reposito-
ries and cache remote components from remote repositories in Archiva Managed Repositories. While
Nexus Repository Manager also provides Proxy repositories, there is one major difference between Nexus
Repository Manager and Archiva. Where Nexus Repository Manager maintains a separate local storage

Repository Management with Nexus 378 /440

directory for each proxy repository, Archiva combines cached remote components into a single file sys-
tem with the contents of a managed repository. In other words, there is no good way to transfer an
existing local cache of components between Archiva and Nexus Repository Manager without manually
manipulating the contents of Archiva’s Managed Repository directory.

To recreate an Archiva repository connector in Nexus Repository Manager as a Proxy repository and to
preserve the local cache of components from this repository. You’ll need to create a Proxy repository in
Nexus Repository Manager, copy the contents of the existing proxy repository to the storage location for
you new Proxy repository, and then rebuild the metadata of your new repository.

First step is to take a look at the Remote Repositories in your Archiva installation. Log in as an ad-
ministrative user and then click on Repositories under the Administration menu in the left-hand Archiva
navigation menu. Once you’ve clicked this link and loaded the list of repositories, scroll to the bottom of
the page to see the list of remote repositories as shown in Figure 23.5.

Remote Repositories b Add

edit X pelete
Central Repository

Identifier ceniral
Mame (Central Repository

URL http://repol.maven.org/maven2
Type Maven 2.x Repository k

\ f Edit * Delete
e Java.net Repository for Maven 2

Identifier mavenZ-repository.dev.java.net
Name Java.net Repository for Mawven 2
URL http://download.java.net/maven/2/
Type Maven 2.x Repository

Figure 23.5: Browsing Archiva Remote Repositories

Defining a proxy repository in Archiva involves associating one of the remote repositories defined in
Figure 23.5 with one of the Managed Repositories defined in Figure 23.1. Once you do this, requests for
components from the managed repository will also query the remote repository. If a component is found
in the remote repository, it will be retrieved and stored in the managed repository’s storage directory. To
see a list of proxy connectors and the managed repositories with which they are associated, click on Proxy
Connectors in the left-hand Archiva menu and you will see a list similar to that shown in Figure 23.6.

Repository Management with Nexus 379 /440

Repository Proxy Connectors

AYy internal
AT Archiva Managed Internal Repository

Proxy Connector

™y central
__‘J Central Repository
http://repol.maven.org/maven2

Settings

Proxy Connector

7 mavenZ-repository.dev.java.net
__‘J Java.net Repository for Maven 2
http://download.java.net/maven/2/

Settings

Figure 23.6: Archiva Proxy Connectors

Click on the edit icon (or pencil) next to second Proxy Connector listed in Figure 23.6, to load the settings
form for this proxy connector shown in Figure 23.7. You should use the settings for this proxy connect to
configure your new Nexus Repository Managerxy repository.

Repository Management with Nexus

380/ 440

Network Proxy™®: | (direct connection) % |
Managed Repository®: | internal +
Remote Repository®: | maven2-repository.dev.java.net +

Policies: Return error when: | always g
On remote error: stop ¥
Releases: once ¥
Snapshots: never B
Checksum: fix ¥
Cache failures: yes B

Properties: Add Property
No properties have been set.

Black List: Add Pattern
No black list patterns have been set.

White List: Add Pattern
"Javax/®*" X
"org/jvnet/®x" b4
"com/sun/**" X

Save Proxy Connector

Figure 23.7: Archiva Proxy Connector Settings

To create a Proxy repository that will correspond to the Proxy Connector in Archiva, log into Nexus
Repository Manager as an administrative user, and click on Repositories in the left-hand main menu.

Once you can see a list of repositories, click on Add...

and select Proxy Repository from the drop-down

of repository types. In the New Proxy Repository form (shown in Figure 23.8) populate the repository
ID, repository Name, and use the remote URL that was displayed in Figure 23.5. You will need to create
a remote repository for every proxy connector that was defined in Archiva.

Repository Management with Nexus

381 /440

Welcome

Repositories %

%Refresh @ Add...~ @ Delete ﬁTrash...v [User Managed Repositories =

Repository Mame

Default Local Storage Location

(Owverride Local Storage Location
+ | Remote Repository Access

Remote Storage Location

Download Remote Indexes True
Checksum Policy Warn
[Y TP XY € W " ¥ Wp— |
Save

Java.net Repository for Maven 2 | &

http://download. java. net/ maven, 2/

Repository Hosted Repository Format ~ Policy Repository Status Repo..
New Proxy Proxy Repository {m‘ und
Eclipse Gn Virtual Repository 4] p2 Google's Eclipse Plugin, Subclipse E... http 4
Public Rep 4] maven2 Releases, Snapshots, 3rd party, Ma... htip ¥
— Repository Group - BRI
New Proxy Repository

Repaositary ID java.net [L*]

-2

Repository Type 2]
Provider Maven2 Repository ¥ &
Format 2]
Repository Policy Release v 2]

©

©

w

.@I

w

el

Figure 23.8: Creating a Nexus Repository Managerxy Repository

To expose this new Proxy repository in a Repository Group, create a new Repository Group or select an
existing group by clicking on Repositories in the left-hand main menu. Click on a repository group and
then select the Configuration tab to display the form shown in Figure 23.9. In the Configuration tab you
will see a list of Order Group Repositories and Available Repositories. Click and drag your new Nexus
Repository Managerxy repository to the list of Ordered Group Repositories, and click Save.

Repository Management with Nexus 382 /440

2 Refresh (@) Add... (@ Delete [Trash...x [[7)User Managed Repositories+

Repository . Type Format = Policy Repository Status

Eclipse Group group p2 Google's Eclipse Plugin, Subclips
Public Repositories group maven2 Releases, Snapshots, 3rd party, 4
Public Snapshot Repositories group maven2 Apache Srapshots, Codehaus 517
= —) 4| e

Public Repositories

Browse | Configuration

Group ID @ W
Group Name Public Repositaries (2]
Provider R
Format
Ordered Group Repositories Available Repositories e
=] Releases =] Apache Snapshots
=| Snapshots =| Codehaus Snapshots
=| 3rd party =] Internal
=] Maven Central =] Secured
=| Sonatype Public Proxy 4

L

=| Java.net Repository for Maven 2
pository @ I
|

Savel Reset

Figure 23.9: Adding a Proxy Repository to a Repository Group

Next, you will need to define repository groups that will tell Nexus Repository Manager to only locate cer-
tain components in the newly created proxy repository. In, Archiva defined three patterns that were used
to filter components available from the proxy connector. These three patterns were "javax/', ''com/sun/",
and "org/jvnet/**". To recreate this behavior, define three Routes which will be applied to the group you
configured in Figure 23.9. To create a route, log in as an administrative user, and click on Routes under
the Administration menu in the left-hand main menu. Click on Add.. and add three inclusive routes that
will apply to the repository group you configured in Figure 23.9.

Repository Management with Nexus 383 /440

Repository Routes
2 Refresh () Add @) Delete

»

Route . Rule Type Group Repositories

Slcomésun/.* inclusive public Java.net Reposit...
Mlorglfjvnet!.* inclusive public Java.net Reposit...
JSjavax/.* inclusive public Java.net Reposit...

Repository Route Configuration

URL Pattern ¥ com/sun/. ¥ L2l

Rule Type Inclusiv v 2]

Repository Group Public Repasitories w7 L]

Ordered Route Repositories Available Repositories

=] Java.net Repository for Maven 2 =] Maven Central
=] Apache Q}?pshlm 1
=] Codehaus Snapshots v
Save J Cancel I

Figure 23.10: Defining Routes

23.2 Migrating from Artifactory

This appendix provides a guideline for migrating a Maven repository from Artifactory to Nexus Reposi-
tory Manager.

Typically migrating from Artifactory revolves around migrating hosted repositories only, since any proxy
repositories configured in Artifactory can just be set up with the same configuration in Nexus Repository
Manager, and all data will be retrieved from the upstream repositories again.

Hosted repositories on the other hand have to be migrated. The best practice for migration is to use the
import/export feature of Artifactory and migrate one hosted repository after another. Please consult the
Artifactory documentation for step-by-step instructions on how to export a repository.

After the export, you have to create a hosted repository in Nexus Repository Manager e.g., with the name
old-releases asdocumented in Section 4.4. This will create a folder in sonatype-work/nexus/storage/old-

Repository Management with Nexus 384 /440

releases.

Now you are ready to take the exported repository and copy it into the newly created storage folder.

Going back to the user interface, navigate to the repository administration and select the Browse Storage
panel. Right-click on the root folder of the repository and select Rebuild Metadata first. and as a second
step select Update Index. Once these tasks are completed, the migrated repository is ready to be used.

After these task are completed, you will probably want to add the migrated repository to the Public
Repositories group or any other group in which you want the migrated repository content to be available.

If you want to ensure that the repository does not get any further content added, you can set the Deploy-
ment Policy to Read Only in the Access Settings of the repository Configuration panel.

Repository Management with Nexus 385/ 440

Chapter 24

Configuring Secure Socket Layer SSL

Available in Nexus Repository Manager OSS and Nexus Repository Manager

Using Secure Socket Layer (SSL) communication with the repository manager is an important security
feature and a recommended best practice. Secure communication can be inbound or outbound.

Outbound client communication may include integration with

* aremote proxy repository over HTTPS,

SSL/TLS secured servers (e.g. for SMTP/email integration)
* LDAP servers configured to use LDAPS

* specialized authentication realms such as the Crowd realm.

Inbound client communication includes

» web browser HTTPS access to the user interface
* tool access to repository content

 and manual or scripted usage of the REST APIs.

Repository Management with Nexus 386 / 440

24.1 Managing Outbound SSL Certificates

24.1.1 Trusting SSL Certificates of Remote Repositories

Auvailable in Nexus Repository Manager only

When the SSL certificate of a remote proxy repository is not trusted, the repository may be automatically
blocked or outbound requests fail with a message similar to PKIX path building failed.

Nexus Repository Manager includes a specific SSL configuration tab for each repository in the repository
configuration documented in Section 6.2 to solve this problem. It is displayed when the remote URL of a
proxy repository resolves to an https: // location.

The SSL tab shows the details of the remote certificate, as in the example Figure 24.1. Use the SSL
tab when the remote certificate is not issued by a well-known public certificate authority included in
the default Java trust store. This specifically also included usage of self-signed certificates used in your
organization.

To confirm trust of the remote certificate, click the Add to trust store button on the top-right of the SSL
tab. This feature is analogous to going to the Figure 24.2 user interface and using the Add button found
there. If the certificate is already added, the button can undo this operation and will read Remove from
trust store.

The checkbox labelled Use Nexus SSL trust store is used to confirm that the repository manager should
consult the private, internal truststore when confirming trust of the remote repository certificate. Without
adding the certificate to the private truststore and enabling the checkbox, the repository will not trust the
remote.

The default JVM truststore of the JVM installation used to run the repository manager and the private
truststores are merged. The result of this merge is used to decide about the trust of the remote server.
The default Java truststore already contains public certificate authority trust certificates. If the remote
certificate is signed by one of these authorities, then explicitly trusting the remote certificate will not be
needed.

Repository Management with Nexus 387 /440

e

Central
4= wse Storage Configuration Health Check Routing S5L Smart Pro; =

#| Use Mexus SSL trust store Remove from trust store

Certificate
Subject
Common Name: repol.maven.org
Organisation: Sonatype, Inc
Unit:

Issuer

Common Name: DigiCert SHA2 Secure Server CA

Organisation: DigiCert Inc

Unit:

Certificate

Issued On: Wed Jul 30 2014 17:00:00 GMT-0700 (PDT)
Valid until: Fri Aug 04 2017 05:00:00 GMT-0700 (PDT)
Fingerprint: 3D:C0:41:69:E1:0D:15:B5:A1:C1:A7:94:B1:C1:I

Figure 24.1: SSL Tab for a Proxy Repository with Remote Server Using HTTPS

(:) Warning
When removing a remote trusted certificate from the truststore, a restart is required before a
repository may become untrusted.

24.1.2 Trusting SSL Certificates Globally

Auvailable in Nexus Repository Manager only

Nexus Repository Manager allows you to manage trust of all remote SSL certificates in a centralized user
interface. Use this interface when you wish to examine all the currently trusted certificates for remote
repositories, or manage certificates from secure remotes that are not repositories.

Repository Management with Nexus

388 /440

Access Figure 24.2 by selecting SSL Certificates in the left-hand Administration menu. The list shows
any certificates that are already trusted.

Welcome

Name

| *rubygems.org

=| *jboss.org

~| repol.maven.org
Subject
Common Name:
Organisation:

Unit:

Issuer
Common Name:
Organisation:

Unit:

Certificate
Issued On:
Valid until:
Fingerprint:

SSL Certificates L

“Z, Refresh [Add...» [5Delete

Issued To Issued By Fingerprint

COMODO CA... FT:7TT:FD:29:CE:6F.C5...
| repol.mavenorg Sonatype, Inc DigiCert Inc 3D:C0:41:69:E1:0D:15:...

Red Hat Inc GeoTrust, Ine. 1EE1:E219:F7:12:2B:...

repol.maven.org

Sonatype, Inc

DigiCert SHA2 Secure Server CA
DigiCert Inc

Wed Jul 30 2014 17:00:00 GMT-0700 (PDT)
Fri Aug 04 2017 05:00:00 GMT-0700 (PDT)
3D:C0:41:69:E1:0D:15:B5:A1:C1:A7:94:B1:C1:F1: D4:A6:AD: A

Figure 24.2: SSL Certificates Administration

Buttons are provided to Refresh the list from the server, Add a new certificate or Delete the selected

certificate.

The Add button presents two options

- Paste PEM and Load from server.

There are two types of secure addresses supported by the Load from server option.

The common approach is to choose Load from server and enter the full https: // url of the remote site,
e.g, https://repol.maven.org. The repository manager will connect using HTTPS and use the
HTTP proxy server settings if applicable. Any other protocol than https:// is ignored, and a direct

Repository Management with Nexus 389 /440

socket connection is attempted in that case.

When the remote is not accessible using https: //, only enter the host name or IP address, optionally
followed by colon and the port number. For example: example.com:8443 . In this case repository
manager will attempt a direct SSL socket connection to the remote host at the specified port.

Alternatively you can choose the Paste PEM option to configure trust of a remote certificate. Copy
and paste the Base64 encoded X.509 DER certificate to trust. This text must be enclosed between lines
containing ————-— BEGIN CERTIFICATE————-— and ————— END CERTIFICATE-————-— .

An example method to get the encoded X.509 certificate into a file on the command line using keytool
is:

keytool -printcert -rfc -sslserver repol.maven.org > repol.pem

The resulting repol . pem file will contain the encoded certificate text that you can cut and paste into the
dialog. An example of inserting such a certificate is shown in Figure 24.3.

Paste certficate as PEM *®

E Please paste a SSL certificate in PEM format.

MIIFAJCCA+qgAwIBAGIQCOS72um/lcqQnpHUFR7LoTANBgkghkiGOWOB
AQsFADBNMQswCQYDVQQG
EwIVUZEVMBMGA1UEChMMRGINaUNIcnQgSWS5jMScw)QYDVQQDEXSEa
WdpQ2VydCBTSEEYIFNIY3VY
ZSBTZX12ZXIgQOEWHNCNMTQWNZMXMDAWMDAWWHCNMTCWODAOMTI
wMDAWW;BAMQswCQYDVQQGEWIV

UzELMAKGA 1UECBMCTUQXD2zANBGNVBACTBKZ 1 bHRVBEWMBQGALUEC
hMNU29UYXR5CGUSIEIYZEY
MBYGA1UEAXMPcmVwbzEubWF2ZW4ub3InMIIBIANBakahkiGIWOBAQ

Lo-ad éen-iﬁ CB-TE |

Figure 24.3: Providing a Certificate in PEM Format

If the repository manager can successfully retrieve the remote certificate or decode the pasted certificate,
the details will be shown in a dialog allowing you to confirm details as shown in Figure 24.4. Please review
the displayed information carefully before clicking Add Certificate to establish the trust store addition.

Repository Management with Nexus 390 /440

Add certificate X
Subject
Common Name: repol.maven.org
Organisation: Sonatype, Inc
Unit:

Issuer

Common Name: DigiCert SHA2 Secure Server CA

Organisation: DigiCert Inc

Unit:

Certificate

Issued On: Wed Jul 30 2014 17:00:00 GMT-0700 (PDT)

Valid until: Fri Aug 04 2017 05:00:00 GMT-0700 (PDT)

Fingerprint: 3D:C0:41:69:E1:0D:15:B5:A1:C1:A7:94:B1:C1:F1:D4:A6: AD: AA:33

Add C-erlif-icat-e:

Figure 24.4: Certificate Details Displayed after Successful Retrieval

In some organizations, all of the remote sites are accessed through a globally configured proxy server
which rewrites every SSL certificate. This single proxy server is acting as a private certificate authority.
In this case, you can follow special instructions for trusting the proxy server root certificate, which can
greatly simplify your certificate management duties.

24.1.3 Trusting SSL Certificates Using Keytool

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

Managing trusted SSL certificates from the command line using keytool and system properties is an alter-
native and more complex option than using the SSL certificate management features of Nexus Repository
Manager.

Before you begin the process of trusting a certificate from the command line you will need:

https://support.sonatype.com/entries/83303437
http://docs.oracle.com/javase/8/docs/technotes/tools/index.html#security

Repository Management with Nexus 391 /440

* a basic understanding of SSL certificate technology and how the Java VM implements this feature
* command line access to the host operating system and the keytool program

* network access to the remote SSL server you want to trust from the host running the repository manager.
This must include any HTTP proxy server connection details

If you are connecting to servers which have certificates that are not signed by a public CA, you will need
to complete these steps:

1. Copy the default JVM truststore file ($JAVA_HOME/jre/lib/security/cacerts) to a
repository manager specific location for editing.

2. Import additional trusted certificates into the copied truststore file.

3. Configure JSSE system properties for the Nexus Repository Manager process so that the custom
truststore is consulted instead of the default file.

Some common commands to manually trust remote certificates can be found in our SSL Certificate Guide.

24.1.3.1 Configuring Nexus Repository Manager With a Custom Truststore

Once you have imported your trusted certificates into a truststore file, you can modify SNEXUS_HOME/bin/jsw/conf/wrag
to set the system properties necessary to load this file. Make sure to adapt the property numbers (10, 11)
to start at the last unused value, which depends on the rest of your configuration.

wrapper.java.additional.l0=-Djavax.net.ssl.trustStore=<truststore>
wrapper. java.additional.ll=-Djavax.net.ssl.trustStorePassword=< <
truststore_password>

Once you have added the properties shown above, restart the repository manager and attempt to proxy a
remote repository using the imported certificated. The repository manager will automatically register the
certificates in the truststore file as trusted.

24.2 Configuring Inbound HTTPS

Available in Nexus Repository Manager OSS and Nexus Repository Manager

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://sonatype.zendesk.com/entries/95353268-SSL-Certificate-Guide#common-keytool-commands

Repository Management with Nexus 392 /440

Providing access to the user interface and content via HTTPS is a recommended best practice for any
deployment.

You have two options:

» Using a separate reverse proxy server in front of the repository manager to manage HTTPS

* Configure the repository manager to serve HTTPS directly

Using A Reverse Proxy Server A common approach is to access the repository manager through a
dedicated server which answers HTTPS requests on behalf of it - these servers are called reverse proxies
or SSL/TLS terminators. Subsequently requests are forwarded to the repository manager via HTTP and
responses received via HTTP are then sent back to the requestor via HTTPS.

There are a few advantages to using these which can be discussed with your networking team. For
example, the repository manager can be upgraded/installed without the need to work with a custom JVM
keystore. The reverse proxy could already be in place for other systems in your network. Common reverse
proxy choices are Apache httpd, nginx, Eclipse Jetty or even dedicated hardware appliances. All of them
can be configured to serve SSL content, and there is a large amount of reference material available online.

Serving SSL Directly We will elaborate here on the second approach, which is to use the Eclipse Jetty
instance that is distributed with Nexus Repository Manager to accept HTTPS connections.

Tip
Keep in mind that you will have to redo some of these configurations each time you upgrade the reposi-
tory manager, since they are modifications to the embedded Jetty instance located in $NEXUS HOME.

To configure the Eclipse Jetty instance to accept HTTPS connections, first enable the file jetty-—
https.xml to the Jetty startup configuration in wrapper.conf as detailed in Section 3.10.2.

Next, the HTTP port you want to use for the HTTPS connection has to be defined by setting the appli
cation-port-ssl property in nexus.properties.

application-port-ssl1=8443

Create a keystore file containing a single certificate that Jetty will use for the HTTPS connections. Instruc-
tions are available on the Eclipse Jetty documentation site. You may find the common keytool commands

http://www.eclipse.org/jetty/documentation/current/configuring-ssl.html

Repository Management with Nexus 393 /440

in our SSL Certiicate Guide a useful reference.

Adjust the values in the jetty-https.xml file in NEXUS_HOME/conf to reflect your keystore set-
tings. The default configuration in that file suggests to create a subdirectory NEXUS_HOME/conf/ssl
and copy the keystore file in there and rename it to keystore. jks. You can either do that or
choose a different location or filename for your keystore file and update the paths for the keystore and
truststoreinthe jetty-https.xml file.

Once this is all in place you can start up the repository manager and access the user interface at e.g.,
https://localhost:8443/nexus. If you have just created a self-signed certificate, modern web
browsers will warn you about the certificate and you will have to acknowledge the fact that the certificate
is self-signed. To avoid this behavior, you have to get a certificate signed by a signing authority or
reconfigure the web browser.

The repository manager is now available via HTTPS. If desired you can configure automatic redirection
from HTTP to HTTPS by adding usage of jetty—-http-redirect-to-https.xml as additional
app parameters in wrapper .conf as well as update the Base URL in your server configuration.

Repository Management with Nexus 394 /440

Chapter 25

Evaluating Step by Step

25.1 Prerequisites and Preparation

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

The following guide for evaluating Nexus Repository Manager is based on an assumption of installing the
repository manager itself as well as the various technologies used in the specific evaluation example all on
one computer. A more extended evaluation of Nexus Repository Manager in a team environment should
follow the instructions for a full installation as documented in the book Repository Management with
Nexus. Consult the book for further in-depth documentation about all features of the Nexus Repository
Manager.

Besides the installation of the repository manager itself, various evaluations will need different prerequi-
sites installed on the machine you use for your evaluation. The installation instructions of these technolo-
gies follow below. Only follow the instructions referenced from the examples in which you are interested.
For example you will only need to install Visual Studio and NuGet if you want to evaluate the .Net
Integration of Nexus Repository Manager.

http://links.sonatype.com/products/nexus/pro/docs
http://links.sonatype.com/products/nexus/pro/docs

Repository Management with Nexus 395/ 440

25.1.1 A Note about the Operating System

Some of the tasks described are referencing command line calls. Where that is the case, this guide will
use Unix typical commands and syntax as used on a bash shell. This is the most common environment on
Linux and Mac OSX computers. On Windows machines, a bash shell can be installed as well, using the
cygwin system. However the typical usage would be to use the Windows command prompt with slightly
different calls. Table 25.1 displays a number of examples for typical tasks carried out in the evaluations
with their bash as well as Windows shell commands.

Table 25.1: Commandline Invocation Examples

Task Bash Shell Window Shell

Delete a file rm filename del filename

Delete a directory rm —-rf directoryname rmdir directoryname
Delete a directory in users rm —-rf ~/.m2/ rmdir /S $HOMEPATHS\
home directory repository .m2\repository

Change to the users home cd ~ cd %SHOMEPATHS%

directory

Script invocation ./build build.bat

Gradle Wrapper script ./gradlew gradlew.bat

invocation

25.1.2 Java Runtime

Nexus Repository Manager itself as well as some of the technologies used in the evaluation require a Java
runtime or development kit, which is available for most operating systems. We recommend to install the
latest Oracle Java 8 JDK available from the download web page and following the installation instructions
on the same site.

After a successful installation, you can verify it by running the command java -version, which
should result in an output similar to

java version "1.7.0_75"
Java (TM) SE Runtime Environment (build 1.7.0_75-bl3)
Java HotSpot (TM) 64-Bit Server VM (build 24.75-b04, mixed mode)

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Repository Management with Nexus 396 / 440

Warning
Nexus Repository Manager and Nexus Repository Manager OSS require Java 7 or Java 8.

25.1.3 Apache Maven

Apache Maven can be retrieved from the download page and installed following the instructions available
there. We recommend the usage of the latest available Maven 3 version.

After a successful installation you can verify it with running the command mvn --version, which
should result in an output similar to

Apache Maven 3.3.3 (799...; 2015-04-22T04:57:37-07:00)

Maven home: /opt/tools/apache-maven-3.3.3

Java version: 1.7.0_75, vendor: Oracle Corporation

Java home: /Library/Java/JavaVirtualMachines/jdk1l.7.0_75.jdk/Contents/Home <

/Jre
Default locale: en_US, platform encoding: UTF-8
OS name: "mac os x", version: "10.8.5", arch: "x86_64", family: "mac"

25.1.4 Gradle

The examples in this guide use the so-called Gradle wrapper script. It allows you to get Gradle installed
automatically by the wrapper and invoke all Gradle commands via it. To use it you simple invoke all
gradle commands with . /gradlew on Unix based systems and gradlew.bat on Windows instead of
gradle.

Alternatively Gradle can be retrieved from the download page and installed following the instructions
available in the User Guide. We recommend the usage of the latest available Gradle version.

After a successful installation, you can verify it with running the command gradle -v, which should
result in an output similar to

Gradle 2.0

Build time: 2014-07-01 07:45:34 UTC
Build number: none

http://maven.apache.org/download.html
http://www.gradle.org/downloads
http://www.gradle.org/docs/current/userguide/installation.html

Repository Management with Nexus 397 /440

Revision: b6ead6fad52dfdadec484059191eb641d817226¢

Groovy: 2.3.3

Ant : Apache Ant (TM) version 1.9.3 compiled on December 23 2013
JVM: 1.7.0_65 (Oracle Corporation 24.65-b04)

0S: Mac OS X 10.8.5 x86_64

25.1.5 Apache Ant and Apache lvy

Apache Ant can be retrieved from the download page and installed following the instructions available in
the manual. We recommend the usage of the latest available Ant version.

After a successful completion,f you can verify your Ant installation by running the command ant -
version, which should result in an output similar to

Apache Ant (TM) version 1.9.4 compiled on April 29 2014

The example projects used in this guide contain ant targets in their build files that will automatically install
Apache Ivy as part of the build. Alternatively you can retrieve Apache Ivy from the download page and
install it following the instructions.

25.1.6 Microsoft Visual Studio and NuGet

Microsoft Visual Studio and NuGet are needed to evaluate the .Net support of Nexus Repository Manager.
There are a number of different Visual Studio distributions. Some of these distributions may have NuGet
already installed, while others do not. Even if your Visual Studio installation is bundled with NuGet, you
will want to make sure that you have upgraded to the latest version of the tool.

NuGet is a fast-paced project, and you’ll find that new packages available on NuGet Gallery may not be
compatible with older versions of the NuGet package manager.

For detailed instructions on installing NuGet in Visual Studio, please go to the NuGet project’s documen-
tation site and refer to the Installing NuGet instructions.

http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/index.html
http://ant.apache.org/ivy/download.cgi
http://ant.apache.org/ivy/history/latest-milestone/install.html
http://www.nuget.org/
http://docs.nuget.org/
http://docs.nuget.org/
http://docs.nuget.org/docs/start-here/installing-nuget

Repository Management with Nexus 398 /440

25.2 Getting Started

This guide is based on the usage of Nexus Repository Manager. A lot of the core features are available in
Nexus Repository Manager OSS as well and some examples are suitable to assess the open source version
as well.

* Step 1: Download the Nexus Repository Manager Trial Installer for your operating system.
» Step 2: Run the Nexus Repository Manager Trial Installer.

* Step 3: Start the Nexus Repository Manager from the Nexus Repository Manager Trial Installer.

When the repository manager has started just click the URL in the wizard or go to http://localhost:8081/-
nexus in a browser window.

Note
This guide and the examples reference the URL http://localhost:8081/nexus. If you have chosen to use
a different port during the installation of the trial simply change the URLs.

Below are several directories to know:

Installation Directory: This is where the application files are installed on your system. We refer to this as
<nexus_install>.

Work Directory: This directory contains your specific repository manager instance configuration files.
We refer to this as <nexus_work>.

Eval Guide Directory: This directory contains supporting sample project files and this document. We
refer to this as <nexus_eval>.

Note
You can locate these directories by viewing the Control Panel.

In case something goes wrong and the repository manager seems to be unavailable, you can examine the
following two log files to diagnose problems.

http://links.sonatype.com/products/nexus/pro/trial
http://localhost:8081/nexus
http://localhost:8081/nexus
http://localhost:8081/nexus

Repository Management with Nexus 399 /440

<nexus_work>/logs/nexus—launcher.log
<nexus_work>/logs/nexus.log

The repository manager tries to listen on port 8081. If you have another application listening on this port,
the repository manager will not be able to start. You can change the port the repository manager listens
on. Open this file

<nexus_install>/conf/nexus.properties

Edit the line that looks like this:

application-port=8081

For example, to access the repository manager on port 9090 instead, change the line to

application-port=9090

Save the file and restart the repository manager.

25.2.1 Activating Your Nexus Repository Manager Trial

Once the repository manager is started and you are accessing the user interface the first time, you will see
the trial activation form. Provide your full name, email address, organization, and location and click on
Submit Activation Request.

You will immediately receive an email from Sonatype with the subject “Your Nexus Repository Man-
ager Trial License,” which contains your trial license key. Paste this license key into the license field in
the Nexus Repository Manager user interface. Click Activate to activate your 14-day Nexus Repository
Manager trial. Once your trial is activated, you will be presented with the user interface.

25.2.2 Logging in as an Administrator

After activating your repository manager install, you can log into the user interface as an administrator.
Go to http://localhost:8081/nexus/ and click on the Login button in the upper right-hand corner of the
interface.

http://localhost:8081/nexus/

Repository Management with Nexus 400/ 440

Log In

Itory Ma nag er ONLY. NOT FOR PRODUCTION USE. 14 days remaining .

Nexus Repository Manager

Type in the name of a project, class, or artifact into the text box below,
and click Search. Use "Advanced Search” on the left for more options.

0

Figure 25.1: Nexus Repository Manager User Interface with Login

The default administrator username is admin and password is adminl23.

The Nexus Repository Manager Trial evaluation guide assumes that you are logged in as an administrator.

25.2.3 Getting Started with Your Nexus Repository Manager Evaluation

To make it easier to evaluate Nexus Repository Manager, we’ve created a set of projects to demonstrate
the features of Nexus Repository Manager OSS and Nexus Repository Manager. These example projects
are bundled with the trial installer for your convenience.

In addition, they are available as the nexus-book-examples project on GitHub at https://github.com/-
sonatype/nexus-book-examples for you to download and inspect separately, if desired. The latest version
of all the examples is available as a zip archive at https://github.com/sonatype/nexus-book-examples/-
archive/master.zip.

When you downloaded the trial distribution of Nexus Repository Manager, your server is also preconfig-
ured to demonstrate important features.

The trial distribution contains the following customizations:

* Nexus Repository Manager has been preconfigured to download the search index from the Central
Repository.

https://github.com/sonatype/nexus-book-examples
https://github.com/sonatype/nexus-book-examples
https://github.com/sonatype/nexus-book-examples/archive/master.zip
https://github.com/sonatype/nexus-book-examples/archive/master.zip

Repository Management with Nexus 401 /440

» A Staging profile has been configured to demonstrate release management.

* Nexus Repository Manager proxies NuGet Gallery so that you can quickly evaluate support for NET
development.

25.3 The Basics: Proxying and Publishing

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

After a few weeks the importance of having a repository manager is so obvious no one on
my team can believe we used to develop software without one.

— Build Engineer Financial Industry

If you are new to repository management, the first step is to evaluate the two basic benefits of running a
repository manager: proxying and publishing.

You can reap these benefits with any Java/JVM build system that includes declarative dependency man-
agement and understands the Maven repository format. In the following we are going to cover the details
for Apache Maven, Gradle and Apache Ant/Apache Ivy based builds. Build tools like SBT, Leiningen,
Gant/Grails and others can be configured to do the same and get access to the same benefits.

25.3.1 Proxying Components

If you use a dependency in your software, your build downloads components from a remote repository,
such as the Central Repository and others. Your systems depend on these components. If one of these
critical remote repositories becomes unavailable, your productivity can grind to a halt.

This is where Nexus Repository Manager can help. Nexus Repository Manager is preconfigured to proxy
the Central Repository, and other remote repositories can be easily added. Once set up, the repository
manager maintains a local cache of the needed components from the remote repositories for you. Your
build is more reliable when all the components you require are cached by the repository manager. It is
providing you with dramatic efficiency and speed improvements across your entire development effort.

In this example, you will...

http://search.maven.org

Repository Management with Nexus 402/ 440

* Configure your build to download components from the repository manager.
* Pre-cache dependencies and build components with an initial build.

* Note organization-wide improvements in build reliability.

Let’s get started using the provided scripts:

The eval bundle includes an installation of Apache Maven as well scripts that isolate your evaluation from
the rest of your system and make it extremely easy for you to follow. The Gradle examples use a wrapper
script to allow you to simply follow the example. To follow the Ant/Ivy examples you will have to install
Apache Ant as explained in Section 25.1.5.

1. Go to the evaluation guide directory you configured during the Nexus Repository Manager install,
which is named evalguide by default and can be found in your users home directory, and run the
command:

$ cd maven
$./build -f simple-project/pom.xml clean install

To use Apache Maven or if you want to try Gradle use

$ cd gradle/simple-project
$./gradlew build

With Apache Ant and Ivy you can run

$ cd ant-ivy/simple-project
$ ant jar

2. As the project builds, you will notice that all components are downloaded from your local repository
manager instance installed with requests from Apache Maven:

Downloading: http://localhost:8081/nexus/content/groups/public/org
/apache/maven/plugins/maven—-clean-plugin/2.5/maven-clean-plugin-2.5. <>
pom
Downloaded: http://localhost:8081/nexus/content/groups/public/org
/apache/maven/plugins/maven-clean-plugin/2.5/maven-clean-plugin-2.5. <>
pom
(4 KB at 1.3 KB/sec)

Here are examples from Gradle:

Repository Management with Nexus 403/ 440

Download http://localhost:8081/nexus/content/groups/public/org/
codehaus/jackson/jackson-core-asl/1.8.0/jackson-core-asl-1.8.0. jar
Download http://localhost:8081/nexus/content/groups/public/org/
codehaus/jackson/jackson-mapper-asl/1.8.0/jackson-mapper-asl-1.8.0.
jar
Download http://localhost:8081/nexus/content/groups/public/com/
google/sitebricks/sitebricks—converter/0.8.5/sitebricks—converter ¢
-0.8.5.jar

Here are examples from Apache Ivy:

[ivy:retrieve] downloading http://localhost:8081/nexus/content/
groups/public/asm/asm-commons/3.2/asm-commons—3.2. jar

[ivy:retrieve] .. (32kB)

[ivy:retrieve] .. (0kB)

[ivy:retrieve] [SUCCESSFUL] asm#asm-—commons; 3.2!asm-commons.jar (313
ms)

3. After the build has successfully completed, delete the local Maven repository cache in the eval
guide directory and rerun the build as before

$ cd maven
$ rm -rf repository

Delete the Gradle cache with

$ rm -rf ~/.gradle

Delete the Ivy cache with

$ ant clean—-cache clean

4. Notice how the downloads are occurring much faster. The components are no longer retrieved from
the remote repositories before being served by the repository manager, but they are supplied straight
from the proxy repository cache.

5. To verify that components are being cached in the repository manager, open the Repositories panel
by clicking on Repositories in the left-hand main menu. Once the list of repositories is displayed,
select Central. Click on the Browse Storage tab and observe the tree of components downloaded
and successfully cached in the repository manager.

Alternatively using your own Apache Maven setup:

1. Ensure that Apache Maven is installed as a prerequisite as documented in Section 25.1.3.

Repository Management with Nexus 404/ 440

2. Go to the evaluation guide directory you configured during the Nexus Repository Manager install
and configure Maven to access the repository manager with the provided settings.xml. Ensure to
back up any existing settings file and adapt the port in the mirror url, if you have chosen to use a
different port than 8081 in the trial installer.

$ cp maven/settings/settings.xml ~/.m2/

3. Optionally, if you do not want to use the default local repository location of Maven in ~/ .m2/
repository, change the localRepository settings in the settings.xml file to an absolute path.

4. Build the simple-project, and observe the downloads from the repository manager.

$ cd maven/simple-project/
$ mvn clean install

5. After the build has successfully completed, delete the local Maven repository cache and rerun
the build. Notice the improved build performance and the cached components in the repository
manager.

$ rm -rf ~/.m2/repository

Conclusion

Your builds will be faster and more reliable now that you are caching components in Nexus Reposi-
tory Manager and retrieving them from there. Once Nexus Repository Manager has cached a compo-
nent locally, there is no need to make another roundtrip to the remote repository server. The caching
benefits all tools configured to access the repository manager.

25.3.2 Publishing Components

Nexus Repository Manager makes it easier to share components internally. How do you distribute and de-
ploy your own applications? Without a repository manager, internal code is often distributed and deployed
using an SCM, a shared file system, or some other inefficient method for sharing binary components.

With Nexus Repository Manager you create hosted repositories, giving you a place to upload your own
component. You can then feed your components back into the same repositories referenced by all devel-
opers in your organization.

In this example, you will...

Repository Management with Nexus 405/ 440

* Publish a component to Nexus Repository Manager.

* Watch another project download this component as a dependency from the repository manager.

Let’s get started using the provided scripts:

1. Follow the proxying evaluation example from Section 25.3.1.

2. Go to the evaluation guide directory and publish the simple-project to the repository manager with
the Maven wrapper script.

$ cd maven
$./build -f simple-project/pom.xml clean deploy

With your own Maven installation you can use

$ cd maven/simple-project/
$ mvn clean deploy

To deploy the project with Gradle, you can run the commands

$ cd gradle/simple-project
$./gradlew upload

The equivalent Ant invocation is

$ cd ant-ivy/simple-project
$ ant deploy

3. The simple-project has been preconfigured to publish its build output in the form of a JAR compo-
nent to your local instance of Nexus Repository Manager.

4. Observe how the build tools log the deployment to the repository manager, e.g., Maven

Uploading: http://localhost:8081/nexus/content/repositories/snapshots/
org/sonatype/nexus/examples/simple-project/1.0.0-SNAPSHOT/
simple-project-1.0.0-20130311.231302-1.jar

Uploaded: http://localhost:8081/nexus/content/repositories/snapshots/
org/sonatype/nexus/examples/simple-project/1.0.0-SNAPSHOT/
simple-project-1.0.0-20130311.231302-1.jar (3 KB at 38.2 KB/sec)

Gradle

Uploading:

org/sonatype/nexus/examples/simple-project/1.0-SNAPSHOT/
simple-project-1.0-20130306.173412-1. jar

to repository remote at

http://localhost:8081/nexus/content/repositories/snapshots

Repository Management with Nexus 406 / 440

or Ivy

[ivy:publish] :: publishing :: org.sonatype.nexus.examples#simple- <
project
[ivy:publish] published simple-project to http://localhost:8081
/nexus/content/repositories/snapshots/org/sonatype/nexus/examples/
simple-project/1.0-SNAPSHOT/simple-project—-1.0-SNAPSHOT. jar

5. To verify that the simple-project component was deployed to repository manager, click on Reposi-
tories and then select the Snapshots repository. Select the Browse Storage tab as shown in this
illustration.

Welcome Repositories X

%, Refresh () Add...~ (&) Delete ﬁTr&sh...v {7 User Managed Repositories -

Repository = Type Health Check Format Policy Repository Status
Codehaus Snapshots proxy) maven2 Snrapshot In Service
Releases hosted o mavenZ Release In Service
Snapshots hosted |) mavenzZ Snapshot In Service
Snapshots

Browse Index Browse Storage Configuration Mirrors Routing Smart Proxy

“Z Refresh Path Lookup:

= =3 Snapshots
E3erg
= =) sonatype
= = nexus
= =7 examples
= =) simple-project
=47 1.0.0-SNAPSHOT
=] maven-metadata.xml
=| maven-metadata. xml.md5s
=| maven-metadata.xml.shal
=| simple-project-1.0.0-20140710.234215-1 jar
=| simple-project-1.0.0-20140710.234215-1 jar.md5
=| simple-project-1.0.0-20140710.234215-1 jar.sha1
=| simple-project-1.0.0-20140710.234215-1. pom
=| simple-project-1.0.0-20140710.234215-1. pom.md5

g simple-project-1.0.0-20140710.234215-1. pom.shal

Figure 25.2: Successfully Deployed Components in the Snapshots Repository

6. Once this component has been published, return to the evaluation sample projects directory and run
a build of another-project:

$ cd maven
$ build -f another-project/pom.xml clean install

With your own Maven installation you can use

Repository Management with Nexus 407 / 440

$ cd maven/another-project
$ mvn clean install

To build the second project with Gradle, simply use

$ cd gradle/another-project
$./gradlew build

Perform the same action with Ant using

$ cd ant-ivy/another-project
$ ant jar

7. This second project has a dependency on the first project declared in the Maven pom.xml with

<dependency>
<groupId>org.sonatype.nexus.examples</groupId>
<artifactId>simple-project</artifactId>
<version>1.0.0-SNAPSHOT</version>
</dependency>

and in the Gradle build.gradle file as

dependencies {
compile "org.sonatype.nexus.examples:simple-project:1.0.0-SNAPSHOT <&

Ivy declares the dependency in ivy.xml and it looks like this

<dependencies>
<dependency org="org.sonatype.nexus.examples" name="simple-project"
rev="1.0.0-SNAPSHOT" />
</dependencies>

During the build, it is relying on the repository manager when it attempts to retrieve the component
from simple-project.

Now that you are sharing components of your projects internally, you do not need to build each other’s
software projects anymore. You can focus on writing the code for your own components and the integra-
tion of all components to create a larger software component. In fact, it does not even matter which build
tool created the component, since the Maven repository format is understood by all of them.

Repository Management with Nexus 408 / 440

Conclusion

Nexus Repository Manager OSS and Nexus Repository Manager can serve as an important tool for
collaboration between different developers and different development groups. It removes the need
to store binaries in source control or shared filesystems and makes collaboration more efficient.

25.4 Governance

Auvailable in Nexus Repository Manager only

25.4.1 Identify Insecure OSS Components In Nexus Repository Manager

The Repository Health Check in Nexus Repository Manager turns your repository manager into the first
line of defence against security vulnerabilities. Nexus Repository Manager scans components and finds
cached components with known vulnerabilities from the Common Vulnerabilities and Exposures (CVE)
database. You can get an immediate view of your exposure from the Repository Health Check summary
report with vulnerabilities grouped by severity according to the Common Vulnerability Scoring System
(CVSS).

As your developers download components, they may be unwittingly downloading components with crit-
ical security vulnerabilities that might expose your applications to known exploits. According to a joint
study by Aspect Security and Sonatype released in 2012, Global 500 corporations downloaded 2.8 mil-
lion flawed components in one year. The repository manager becomes an effective way to discover flawed
components in your repositories allowing you to avoid falling victim to known exploits.

Repository Management with Nexus 409 /440

FOR Central 83
ON Wed Jan 02 2013 at 15:05:31 ARTIFACTS IDENTIFIED AS OPEN SOURCE

AGE 21 minutes 100% of B3 TOTAL

¥ Security Vulnerability Summary ® License Analysis Summary

Critical (B-10) Copyleft

Thraat

vt 9 1 2 3 4 5 & 7 @ 9 11%
(] 1

10

]

Severae (4-T) Mon Standard Mot Provided

A]

Moderate (1-3) Weak Copyleft Liberal
1 15
Upgrade to Nexus Pro to receive a detailed report L . !
) View a Sample Detailed Report
that shows where and what these issues are.
Disable

Figure 25.3: Repository Heath Check Summary

In this example, you will...

* Start an analysis of all components proxied from the Central Repository.

* Inspect the number of security vulnerabilities found.

Let’s get started

1. Follow the proxying examples in Section 25.3 to seed the Central proxy repository of your repos-
itory manager instance. These examples include several components with security vulnerabilities
and license issues as dependencies.

2. Once your repository manager instance has cached the components, open the user interface, log in
as administrator and click on the green Analyze button next to your Central proxy repository.

3. After the completion of the analysis, the button will change into an indicator of the number of
security and license issues found.

4. Hover your mouse over the indicator and the repository manager will show you a summary report
detailing the number and type of security vulnerabilities present in you repository.

5. Optionally, build some of your own applications to get further components proxied and see if addi-
tional security issues appear.

Repository Management with Nexus 410/440

¥ Security Vulnerability Summary

Critical (B-10) Thraat
L

f.iavara (4-T))) T

—
Moderate (1-3)

Figure 25.4: Security Vulnerability Summary Display from Repository Health Check

Nexus Repository Manager users gain access to further details about all the components with security
vulnerabilities, including their repository coordinates to uniquely identify the component as well as links
to the vulnerability database records for further details.

Conclusion

The Repository Heath Check of Nexus Repository Manager allows you to get an understanding of
all the security vulnerabilities affecting the components you have proxied into your environment
and which might potentially be part of the software you are creating, distributing, and deploying in
production environments.

25.4.2 Track Your Exposure To OSS Licenses

With Open Source Software (OSS) component usage as the de facto standard for enterprise application
development, the importance of tracking and identifying your exposure to OSS licenses is an essential
part of the software development life cycle. Organizations need tools that let them govern, track, and
manage the adoption of open source projects and the evaluation of the licenses and obligations that are
part of OSS development and OSS component usage.

With Nexus Repository Manager’s Repository Health Check, your repository becomes more than just a
place to store binary components. It becomes a tool to implement policies and govern the open source
licenses used in development to create your applications.

In this example, you will...

Repository Management with Nexus 411 /440

* Start an analysis of all components proxied from the Central. Repository

* Inspect the number of license issues found.

Let’s get started

. Follow the proxying examples in Section 25.3 to seed the Central proxy repository of your Nexus

Repository Manager instance. These examples include several components with security vulnera-
bilities and license issues as dependencies.

Once your repository manager instance has cached the components, log in to the user interface as
administrator and click on the green Analyze button next to your Central proxy repository in the
Repositories list.

After the completion of the analysis, the button will change into an indicator of the number of
security and license issues found.

Hover your mouse over the indicator and the repository manager will show you a summary report
detailing the number and type of license issues of components present in you repository.

Optionally, build some of your own applications to get further components proxied and see if addi-
tional license issues appear.

R License Analysis Summary

Coilcﬂ A%
MNon Standard Not Providad
Weak Copyleft Libaral

17

Figure 25.5: License Analysis Summary Display from Repository Health Check

Nexus Repository Manager OSS and the trial version show the summary information found by the anal-

ysis.

Nexus Repository Manager customers can access a detailed report to identify specific components with
known security vulnerabilities or unacceptable licenses. The component lists can be sorted by OSS license

Repository Management with Nexus 412/440

or security vulnerabilities, and Nexus Repository Manager provides specific information about licenses
and security vulnerabilities. A detailed walkthrough of this report is available on the Sonatype website.

Weloome # || Repasitories: “ | RHC-Central Praxy *
R Central Proxy 42069 2144 19524
« Tue Feb 14 2012 al 123744 ??TIFM'_I'NS'IDEN'IIFIED AS OPEN SOURCE fE.GLIRIT‘fALERTS LICENSE ALERTS
2 hours = e bt
W Security Vulnerability Summary ¥ License Analysis Summary
Critical (8-10) Tresa: Copyloft
Y 10%
"
LI |
. 16%
Sevare (4T) 7 O Nen Standard Nat Previded
¢
5 —
e ——
Modorats [1-3] 3 Wank Cogyleht Liberal
2 21%
613 ‘ 8815
View By | () Artifacts = | Repasitory exceeded allowabls artifact limit. Contact Sonatype support for more information. Viewing 1 - 12 of 5,000
License Threat - Declared License Observed Licenses in Source
GPL Apache-2.0, GPL
M orzo+ U+, B30, EPL-1.0+, LGPL-2.0+, LGPLZ.1+ | Apache-2.0, B0, EPL-1.0, GPL-2.0+, LGPLZ.1+
GPL20 200L, GPL. GPL-20 Mot Prosaded
W erL crLzo COOL, GPL, GPL-2.0 Mot Prosdded
GPL-2.0, GPL-20+ Apache-2.0 Apache-1.1, Apache-2.0, GPL-2.0, GPL-2.0+, LGPL-2.1, MPL-1.1
HMorL cPL20 CODL. GPL.GPL-20 Mat Presiding

Figure 25.6: Repository Health Check Details with License Issues List

Conclusion

OSS License compliance and security assessments are not something you do when you have the
time. It is something that should be a part of your everyday development cycle, as it is with Nexus

Repository Manager’s Repository Health Check.

25.5 Process Improvements

25.5.1 Grouping Repositories

Available in Nexus Repository Manager OSS and Nexus Repository Manager

http://www.sonatype.com/Products/Nexus-Professional/Features/Repository-Health-Check

Repository Management with Nexus 413 /440

Once you have established Nexus Repository Manager and set up your build, provisioning system, and
other tools to connect to the repository manager, you can take advantage of repository groups. The best
practice to expose Nexus Repository Manager is to get users to connect to the Public Repositories group
as configured in the settings.xml as documented in Section 25.3.1.

When all clients are connecting to the repository manager via a group, you can easily provide additional
repository content to all users by adding new repositories to the group.

For example, imagine a group in your organization is starting to use components provided by the JBoss
release repository available at https://repository.jboss.org/nexus/content/repositories/releases/. The devel-
opers are already accessing the repository manager via the public group. All you have to do is to create
a new proxy repository for the JBoss release repository and add it to the public group and all developers,
continuous integration (CI) servers and other tools will have access to the additional components.

To add the Grails repositories, proxy them and add them to the group. The same approach applies to
proxy Clojars or other repository of a business partner or suppier who is protected by user credentials.

Another advantage of groups is that you can mix release and snapshot repositories and easily expose all
the components via one easy access point.

Besides using the default public group, you can create additional groups that expose other contexts. An
example would be to create a group for all staged releases allowing a limited number of users access to
your release components as part of the release process.

Conclusion

Using groups allows you to expose multiple repositories, mix snapshot and release components
and easily administrate it all on the Nexus Repository Manager server. This allows you to provide
further components to your developers or other users, without requiring a change on these client
system, tremendously simplifying the administration effort.

25.5.2 Staging a Release with Nexus Repository Manager

Auvailable in Nexus Repository Manager only

When was the last time you did a software release to a production system? Did it involve a QA sign-off?
What was the process you used to redeploy, if QA found a problem at the last minute? Developers often

https://repository.jboss.org/nexus/content/repositories/releases/
https://clojars.org/

Repository Management with Nexus 414 /440

find themselves limited by the amount of time it takes to respond and create incremental builds during a
release.

The Nexus Staging Suite changes this by providing workflow support for binary software components.
If you need to create a release component and deploy it to a hosted repository, you can use the Staging
Suite to post a release, which can be tested, promoted, or discarded, before it is committed to a release
repository.

The following example uses Apache Maven. Example projects for Gradle and Ant are part of the eval
guide resources.

In this example, you will...

* Configure a project to publish its build output component to Nexus Repository Manager.
* Deploy a release and view the deployed component in a temporary staging repository.

* Promote or discard the contents of this temporary staging repository.

Let’s get started using the provided scripts:

1. This example assumes that you have successfully deployed the simple-project as documented in
Section 25.3.1.

2. Inspect the preconfigured Example Release Profile staging profile by selecting it from the list avail-
able after selecting Staging Profiles in the Build Promotion menu in the left-hand navigation.

3. Notice that the version of the simple-project in the pom.xml ends with -SNAPSHOT. This means
that it is in development.

4. Change the version of the simple project to release version by removing the -SNAPSHOT in a text
editor or run the command

$./build -f simple-project/pom.xml versions:set -DnewVersion=1.0.0

5. Publish the release to the Staging suite with

$./build -f simple-project/pom.xml clean deploy

6. To view the staging repository, click on Staging Repositories in the Build Promotion menu and you
should see a single staging repository as shown in this illustration.

7. Click on Close to close the repository and make it available via the public group.

Repository Management with Nexus 415/ 440

8. Experiment with Staging, at this point you can:

a. Click on Drop to discard the contents of the repository and be able to stage another release.

b. Click on Release to publish the contents of the repository to the release repository.

9. Once you release the staging repository, you will be able to find the release components in the
Releases hosted repository.

Welcome Staging Repositorie '*

“Z Refresh |] Close| - 29 & Drop

[Repository| Close staging repositories [rofile
Zl 2 example_release_profile-1000 example_relea...

4 example_release_profile-1000
Summary Activity Content

% Refresh Path Lookup:

= = example_release_profile-1000 (u:admin, a:127.0.0.1)
= 3org
= =3 sonatype
= &5 nexus
=l) examples
= i simple-project
==31.00

=] simple-project-1.0.0 jar
/=] simple-project-1.0.0 jar.md5
i] simple-project-1.0.0jar.sha
=] simple-project-1.0.0.pom
i] simple-project-1.0.0.pom.mdS
Z] simple-project-1.0.0 pom.sha1

Figure 25.7: Closing a Staging Repository in the User Interface

The individual transactions triggered by closing, dropping, promoting, or releasing a staging repository
can be enriched with email notifications as well as staging rule inspections of the components.

Alternatively using your own Apache Maven setup:

1. Follow the steps described above with the modification of setting the new version with

$ cd maven/simple-project
$ mvn versions:set -DnewVersion=1.0.0

Repository Management with Nexus 416/ 440

2. And publishing to the Staging suite with

$ mvn clean deploy

Conclusion

Staging gives you a standard interface for controlling and managing releases. A collection of related
release components can be staged for qualification and testing as a single atomic unit. These staged
release repositories can be discarded or released pending testing and evaluation.

25.5.3 Hosting Project Web Sites

Available in Nexus Repository Manager OSS and Nexus Repository Manager

Nexus Repository Manager and Nexus Repository Manager OSS can be used as a publishing destination
for project websites. You don’t have to worry about configuring another web server or configuring your
builds to distribute the project site using a different protocol. Simply point your Maven project at the
repository manager and deploy the project site.

With the repository manager as a project’s site hosting solution, there’s no need to ask IT to provision
extra web servers just to host project documentation. Keep your development infrastructure consolidated
and deploy project sites to the same server that serves your project’s components.

You can use this feature internally, but it is even better suited if you are providing an API or components
for integration. You can host full project websites with JavaDoc and any other desired documentation
right with the components you provide to your partners and customers.

In this example, you will...

* Create a Hosted repository with the Maven Site provider.

 Configure your project to publish a website to Nexus Repository Manager.

Let’s get started using the provided scripts:

1. Create a hosted repository with the Site format and a Repository ID called site — Read more. . .

http://www.sonatype.com/books/nexus-book/reference/_creating_a_site_repository.html

Repository Management with Nexus 417 /440

2. Deploy the simple-project component and site to the repository manager:

$./build -f simple-project/pom.xml clean deploy site-deploy
3. Browse the generate site on the repository manager at http://localhost:808 I/nexus/content/sites/-
site/

4. Optionally, configure your own Maven project to deploy a site to the repository manager — Read
more. . .

5. Publish it to the repository manager — Read more. ..

Alternatively using your own Apache Maven setup:

1. Follow the steps described above with the modification of deploying the site with

$ cd maven/simple-project
$ mvn clean deploy site-deploy

Conclusion

If your projects need to publish HTML reports or a project web site, Nexus Repository Manager
and Nexus Repository Manager OSS provide a consolidated target for publishing project-related
content.

25.5.4 Process and Security Improvements with Maven Settings Management and
User Token

Auvailable in Nexus Repository Manager only

The Maven settings.xml file plays a key role for retrieving as well as deploying components to the
repository manager. It contains <server> sections that typically contain the username and password
for accessing a repository manager in clear text. Especially with single sign-on (SSO) solutions used for
authentication, this is not desirable. In addition, security policies often mean that the file regularly needs
to be updated.

The User Token feature of Nexus Repository Manager allows you to replace the SSO username and
password with Nexus Repository Manager-specific tokens that are autogenerated and managed by the
repository manager.

http://localhost:8081/nexus/content/sites/site/
http://localhost:8081/nexus/content/sites/site/
http://www.sonatype.com/books/nexus-book/reference/_configuring_maven_for_site_deployment.html
http://www.sonatype.com/books/nexus-book/reference/_configuring_maven_for_site_deployment.html
http://www.sonatype.com/books/nexus-book/reference/_publishing_a_maven_site_to_nexus.html

Repository Management with Nexus 418 /440

Furthermore, the Nexus Maven Settings Management allows you to manage Maven Settings. Once you
have developed a Maven Settings template, developers can connect to Nexus Repository Manager using
the Nexus M2Settings Maven plugin that will take responsibility for downloading a Maven Settings file
from the repository manager and replacing the existing Maven Settings on a local workstation. It can be
configured to automatically place your user tokens in the settings.xml file.

In this example, you will...

» Explore the configuration of a Maven Settings template in Nexus Repository Manager.

* Activate and access your user token.

Let’s get started

1. Log into the repository manager as administor and access the Maven Settings administration via the
item in the Enterprise menu.

2. Press the Add button, provide a name and edit the new settings file.

3. Add the server section:

<servers>

<server>
<id>nexus</id>
<!—— User-token: $[userToken] ——>
<username>$ [userToken.nameCode] </username>
<password>$ [userToken.passCode] </password>

</server>

</servers>

4. Read more about potential configuration and usage in Manage Maven Settings Templates

5. Downloading the settings template requires Nexus Repository Manager running via HTTPS and
can then be performed with the command below and following the prompts:

mvn org.sonatype.plugins:nexus-m2settings-maven—-plugin:1l.6.2:download <>
—-Dsecure=false

6. Note that the secure option is set to false for your evaluation. The plugin would otherwise abort for
using the insecure HTTP protocol once you provide your evaluation Nexus Repository Manager
URL of http://localhost:8081/nexus. For a production usage, we recommend using
the secure HTTPS protocol for your Nexus Repository Manager deployments.

7. Find out more about the usage in Download Settings from the repository manager — Read more. ..

http://www.sonatype.com/books/nexus-book/reference/settings-sect-install.html
http://www.sonatype.com/books/nexus-book/reference/settings-sect-downloading.html

Repository Management with Nexus 419/ 440

8. Activate User Token in the configuration in the Security menu User Token administration by check-
ing the Enabled box and pressing the Save button.

9. Access your User Profile in the drop-down of your user name in the top right-hand corner of the
user interface.

10. Use the drop-down in the Profile panel to access User Token.

11. In the User Token screen, press Access User Token, provide your username and password again,
and inspect the tokens in the pop-up dialog.

Conclusion

The distribution of settings.xml is a crucial part of the rollout of repository manager usage.
With the help of the Nexus M2Settings Maven Plugin and the server side settings template, it is
possible to automate initial distribution as well as updates to the used settings.xml files. The
User Token feature allows you to avoid having SSO credentials exposed in your file system at all.

25.6 .NET Integration

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

25.6.1 Consume .NET Components from NuGet Gallery

The NuGet project provides a package and dependency management solution for .NET developers. It is
integrated directly into Visual Studio and makes it easy to add, remove and update libraries and tools in
Visual Studio and on the command line for projects that use the .NET Framework. Nexus Repository
Manager can act as a proxy between your developer’s Visual Studio instances and the public NuGet
Gallery.

When you configure Nexus Repository Manager to act as a proxy for NuGet Gallery you gain a more
reliable build that depends on locally cached copies of the components on which you depend. If NuGet
Gallery has availability problems, your developers can continue to be productive. Caching components
locally will also result in a faster response for developers downloading .NET dependencies.

In this example, you will...

Repository Management with Nexus 420 /440

» Configure your Visual Studio instance to download NuGet packages from your local repository man-
ager.

* Consume components from NuGet Gallery via Nexus Repository Manager.

Let’s get started

Your Nexus Repository Manager Trial instance has been preconfigured with the following NuGet reposi-
tories:

* A Proxy Repository for NuGet Gallery
* A Hosted Repository for your internal NET components

* A Group which combines both the NuGet Gallery Proxy and the Hosted NuGet Repository

Welcome Repositories X
“ZRefresh () Add...~ (S Delete {Ff Trash...» [[7|User Managed Repositories | nuget Q |
Repository = Type H... Format ... Repository Status Repository Path

NuGet Public Group group nuget http:/flocalhest:B081/nexus/content/grou. ..
NuGet Gallery proxy nuget In Service hitp:/localhost: B081/nexus/contentrepo. ..
NuGet Releases heosted nuget In Service http:/flocalhest:B0B1/nexus/contentirepo. ..
NuGet Third Party hosted nuget In Service http:/flocalhost:B081/nexus/contentirepo. ..

Figure 25.8: NuGet Repositories in Repository List Accessed Using the List Filter Feature

To consume .NET components from Nexus Repository Manager you will need to install the NuGet feature
in Visual Studio as referenced in Section 25.1.6 and configure it appropriately:

1. Open Nexus Repository Manager, click on Repositories in the left-hand navigation menu and locate
the NuGet Group repository group. This is the aggregating group from which Visual Studio should
download packages. Click on this repository group in the list of repositories.

2. Select the NuGet tab below the list of repositories with the NuGet Group selected and copy the
URL in the Package Source field to your clipboard. The value should be http://localhost:
8081 /nexus/service/local/nuget/nuget—-group/.

3. Now in Visual Studio, right-click on a Visual Studio project and select Add Library Reference.

4. In the Add Library Package Reference, click on the Settings button in the lower left-hand corner.

Repository Management with Nexus 421 /440

5. This will bring up an Options button. Remove the initial NuGet repository location and replace it
with a reference to your repository manager instance. Clicking Add to add the reference.

6. Click OK to return to the Add Library Package Reference dialog.

7. Select the Online item in the left-hand side of the dialog. At this point Visual Studio will interrogate
your repository manager for a list of NuGet packages.

8. You can now locate the package you need and install it.

9. To verify that the NuGet package components are being served from Nexus Repository Manager
you can return to the web interface and browse the local storage of your NuGet proxy repository.

Note
Watch this video of the steps being performed in Visual Studio.

The above instructions were created using Visual Studio 10 Web Developer Express. Your configuration
steps may vary if you are using a different version of Visual Studio.

Conclusion

When your developers are consuming OSS .NET components through a proxy of NuGet gallery
your builds will become more stable and reliable over time. Every component will be downloaded
to Nexus Repository Manager only once, and every following download will enjoy the performance
and reliability of a local download from the cache.

25.6.2 Publish and Share .NET Components with NuGet

Nexus Repository Manager can improve collaboration and control, while increasing the speed of .NET
development. NuGet defines a packaging standard that organizations can use to share components.

If your organization needs to share .NET components, you can publish these components to a hosted
NuGet repository on the repository manager. This makes it easy for projects within your organization to
start publishing and consuming NuGet packages using Nexus Repository Manager as a central hub for
collaboration.

http://www.youtube.com/v/HXksSdhoqbA?version=3

Repository Management with Nexus 422 /440

Once NuGet packages are published to your repository manager instance they are automatically added to
the NuGet repository group, making your internal packages as easy to consume as packages from NuGet
Gallery.

In this example, you will...

* Publish NuGet packages to a Hosted NuGet repository.

* Distribute custom .NET components using Nexus Repository Manager.

Let’s get started:

1. Follow the example from Section 25.6 to set up proxying of NuGet packages from the repository
manager.

2. Activate the NuGet API Security Realm — Read more. ..

3. Create a NuGet Package in Visual Studio. Creating a package for deployment can be done with the
pack command of the nuget command line tool or within Visual Studio. Detailed documentation
can be found on the NuGet website.

4. Publish a NuGet Package to Nexus Repository Manager — Read more. ..

Conclusion

Once NuGet packages are published to your Nexus Repository Manager instance and are available
via a NuGet repository group, your internal packages will be as easy to consume as packages from
NuGet Gallery.

This will greatly improve sharing of components and reuse of development efforts across your teams
and allow you to modularize your software.

25.6.3 Security

25.6.3.1 Integration with Enterprise LDAP Solutions

Auvailable in Nexus Repository Manager OSS and Nexus Repository Manager

http://books.sonatype.com/nexus-book/reference/configxn-sect-customizing-server.html#_security_settings
http://docs.nuget.org/
http://books.sonatype.com/nexus-book/reference/nuget-deploying_packages_to_nuget_hosted_repositories.html

Repository Management with Nexus 423 /440

Organizations with large, distributed development teams often have a variety of authentication mecha-
nisms, from multiple LDAP servers with multiple User and Group mappings, to companies with develop-
ment teams that have been merged during an acquisition. Nexus Repository Manager’s Enterprise LDAP
support was designed to meet the most complex security requirements and give administrators the power
and flexibility to adapt to any situation.

Nexus Repository Manager offers LDAP support features for enterprise LDAP deployments including
detailed configuration of cache parameters, support for multiple LDAP servers and backup mirrors, the
ability to test user logins, support for common user/group mapping templates, and the ability to support
more than one schema across multiple servers.

Let’s get started

Read more about configuring Enterprise LDAP to learn about the following:

* Configuring LDAP caching and timeout.

* Configuring and testing LDAP failover.

» Using LDAP user and group mapping templates for Active Directory, POSIX with dynamic or static
groups or generic LDAP configuration.

With Enterprise LDAP support in Nexus Repository Manager, you can do the following:

Cache LDAP authentication information.
» Use multiple LDAP servers, each with different User and Group mappings.

» Use LDAP servers with multiple backup instances and test the ability of Nexus Repository Manager to
failover in the case of an outage.

* Augment the roles from LDAP with Nexus Repository Manager specific privileges.

Conclusion

When you need LDAP integration, you will benefit from using Nexus Repository Manager. Nexus
Repository Manager can support the largest development efforts, with some of the most complex
LDAP configurations, including multiple servers and support for geographic failover and does so in
production with many users every day.

http://www.sonatype.com/books/nexus-book/reference/ldap-sect-enterprise.html

Repository Management with Nexus 424 /440

25.6.3.2 Integration with Atlassian Crowd

Available in Nexus Repository Manager only

If your organization uses Atlassian Crowd, Nexus Repository Manager can delegate authentication and
access control to a Crowd server by mapping Crowd groups to Nexus Repository Manager roles.

Let’s get started

1. Configure the Crowd Plugin — Read more. ..
2. Map Crowd Groups to Nexus Repository Manager Roles — Read more. ..

3. Add the Crowd Authentication Realm — Read more. ..

Conclusion

If you’ve consolidated authentication and access control using Atlassian Crowd, take the time to
integrate your repository manager with it as well. Nexus Repository Manager’s support for Crowd
makes this easy.

25.6.4 Enterprise Deployments

Available in Nexus Repository Manager only

25.6.4.1 Scaling Nexus Repository Manager Deployments for Distributed Development

Avoid downtime by deploying Nexus Repository Manager in a highly available configuration! With the
Nexus Repository Manager feature Smart Proxy, two distributed teams can work with local instances of
the repository manager that will inform each other of new components as they are published. Smart Proxy
is an enhanced proxy setup with push notifications and potential prefetching of components. It allows you
to keep proxy repositories on multiple repository managers in sync without sacrificing performance.

A team in New York can use a Nexus Repository Manager instance in New York and a team in Sydney
can use an instance in Australia. If a component has been deployed, deleted, or changed, the source

http://www.sonatype.com/books/nexus-book/reference/crowd.html#crowd-sect-config
http://www.sonatype.com/books/nexus-book/reference/crowd.html#crowd-sect-mapping
http://www.sonatype.com/books/nexus-book/reference/crowd.html#crowd-sect-realm

Repository Management with Nexus 425/ 440

repository notifies the proxy. Both teams are assured that the repository manager will never serve stale
content. This simple mechanism makes it possible to build complex distributed networks of repository
manager instances relying on this publish/subscribe approach.

In this example, you will...

* Setup two instances of Nexus Repository Manager.

» Configure one instance to proxy the hosted instances of the other instance.

* Configure the proxying instance to subscribe to Smart Proxy events.

Let’s get started

1. Enable Smart Proxy publishing — Read more. ..
2. Establish trust between repository managers — Read more. ..

3. Configure Smart Proxy for specific repositories — Read more. ..

Conclusion

With Smart Proxy, two or more distributed instances of Nexus Repository Manager can stay up to
date with the latest published components. If you have distributed development teams, Smart Proxy
will allow both teams to access a high-performance proxy that is guaranteed to be up to date.

http://www.sonatype.com/books/nexus-book/reference/smartproxy-enabling_smart_proxy_publishing.html
http://www.sonatype.com/books/nexus-book/reference/smartproxy-establishing_trust.html
http://www.sonatype.com/books/nexus-book/reference/smartproxy-repository_specific_smart_proxy_configuration.html

Repository Management with Nexus 426 / 440

Chapter 26

Community

Available in Nexus Repository Manager OSS and Nexus Repository Manager

26.1 Introduction

Nexus Repository Manager OSS and Nexus Repository Manager are widely used in a large variety of
organizations for numerous different use cases.

Integrating the repository manager and expanding its features is encouraged and enabled by the availabil-
ity of Nexus Repository Manager OSS under the Eclipse Public License, the REST API and the support
for plugins as part of the repository manager itself, including writing your own plugins.

A number of tools are available to facilitate the community of users.

TheNexus
A community website with numerous resources including blog posts, videos, announcements and
many others available at http://nexus.sonatype.org.

Users Mailing List
General discussion and support for anyone using and developing with Nexus Repository Manager
or Nexus Repository Manager OSS - Browse or Subscribe.

http://nexus.sonatype.org
https://groups.google.com/a/glists.sonatype.com/forum/#!forum/nexus-users

Repository Management with Nexus 427 / 440

Chat
Sonatype provides a live chat channel to connect to other users and developers as well as Sonatype
support and development staff.

Source Code
The Nexus Repository Manager OSS codebase is a great reference for your development of custom
integrations and plugins. It is available on GitHub at https://github.com/sonatype/nexus-oss.

26.2 Community Overview

Community projects range from open source efforts run by Sonatype, projects run by Nexus Repository
Manager customers or Nexus Repository Manager OSS users to one man, one-off hacks for some older
version.

When using any of these projects, ensure you keep the quality of the project and their impacts on your
production repository manager in mind.

26.3 Plugins

Plugins expand functionality of the repository manager itself in various aspects on the user interface and
underlying features:

Nexus Repository Manager OSS Plugins https://github.com/sonatype/nexus-oss/tree/master/plugins

Large number of plugins bundled with Nexus Repository Manager OSS including YUM support,
P2 support and others.

Example Plugins https://github.com/sonatype/nexus-example-plugins
Example plugins from Sonatype.

APT Plugin https://github.com/Tangresh/nexus-apt-plugin
APT/DEB repository support.

Rundeck Plugin https://github.com/rundeck/nexus-rundeck-plugin
Integration with Rundeck

Webhook Plugin https://github.com/vbehar/nexus-webhook-plugin
Support for webhook notifications for component deployments.

https://links.sonatype.com/products/nexus/community-chat
https://github.com/sonatype/nexus-oss
https://github.com/sonatype/nexus-oss/tree/master/plugins
https://github.com/sonatype/nexus-example-plugins
https://github.com/Tangresh/nexus-apt-plugin
https://github.com/rundeck/nexus-rundeck-plugin
http://rundeck.org/
https://github.com/vbehar/nexus-webhook-plugin

Repository Management with Nexus 428 /440

Artifact Usage Plugin https://github.com/saleemshafi/nexus-artifact-usage-plugin
Plugin to display components depending on a specific component.

Dependency Mgt. Plugin https://github.com/Terracotta-OSS/nexus-dependency-management-plugin

Plugin to display the dependency tree of a component with further detailed information.

Groupld Mgt. Plugin https://github.com/UW-Madison-DolT/nexus-groupid-management-plugin

Plugin to help with provisioning security per groupld.

Repository Cleanup Plugin https://github.com/Vlatombe/nexus-repository-cleanup-plugin/
Scheduled task that can remove components based on age and a regular expression pattern.

Gitlab Token Auth Plugin https://github.com/jdamick/nexus-gitlab-token-auth-plugin
Authentication support using Gitlab user token.

AWS S3 Publish Plugin https://github.com/carrot-garden/carrot-nexus
lugin to publish components deployed to the repository manager also to AWS S3.

Hipchat for Nexus Plugin https://bitbucket.org/tpettersen/hipchat-for-nexus

Supports notifications in HipChat when components matching a pattern are deployed to the reposi-
tory manager.

26.4 Integrations

Nexus Maven Plugins https://github.com/sonatype/nexus-maven-plugins
The official Nexus Staging Maven Plugin and the Nexus M2Settings Maven Plugin from Sonatype.
The plugins are using the REST API client library and can be used as example for your own Maven
plugins or other Java based clients.

Nexus Ant Tasks https://github.com/sonatype/nexus-ant-tasks
The official Nexus Staging Ant Tasks from Sonatype.

Puppet Module for Nexus https://github.com/hubspotdevops/puppet-nexus
Puppet module to install and configure Nexus Repository Manager OSS, authored by HubSpot

Puppet Module for Nexus https://forge.puppetlabs.com/atlassian/nexus_rest
Another Puppet module to manage a Nexus Repository Manager, authored by Atlassian

Nexus Cookbook https://github.com/RiotGames/nexus-cookbook
Chef cookbook to install and configure Nexus Repository Manager.

Openshift Nexus https://github.com/hongun/openshift-nexus
Scripts to provision Nexus Repository Manager on OpenShift.

https://github.com/saleemshafi/nexus-artifact-usage-plugin
https://github.com/Terracotta-OSS/nexus-dependency-management-plugin
https://github.com/UW-Madison-DoIT/nexus-groupid-management-plugin
https://github.com/Vlatombe/nexus-repository-cleanup-plugin/
https://github.com/jdamick/nexus-gitlab-token-auth-plugin
http://gitlab.org/
https://github.com/carrot-garden/carrot-nexus
https://bitbucket.org/tpettersen/hipchat-for-nexus
https://github.com/sonatype/nexus-maven-plugins
https://github.com/sonatype/nexus-ant-tasks
https://github.com/hubspotdevops/puppet-nexus
https://forge.puppetlabs.com/atlassian/nexus_rest
https://github.com/RiotGames/nexus-cookbook
https://github.com/hongun/openshift-nexus
https://www.openshift.com/

Repository Management with Nexus 429 /440

Nexus Ruby CLI https://github.com/RiotGames/nexus_cli
Ruby-based set of command line programs to interact with Nexus Repository Manager.

Nexus Python CLI https://github.com/stardust85/repositorytools/
Python-based set of command line programs to interact with Nexus Repository Manager.

Nexus RPM Package https://github.com/jbraeuer/nexus-oss-rpms
Nexus Repository Manager OSS as RPM package.

Nexus DEB Package https://github.com/tobrien/nexus-oss-deb
Nexus Repository Manager OSS as DEB package.

Puppet Nexus Client https://github.com/cescoffier/puppet-nexus
Puppet module to retrieve components from a .

Gradle Plugin https://github.com/bmuschko/gradle-nexus-plugin
Gradle plugin to deploy components to Nexus Repository Manager and via OSSRH to the Central
Repository.

Gradle Staging Plugin https://github.com/adaptivecomputing/plugins-gradle/tree/master/nexus-workflow

Gradle plugin to deploy components to Nexus Repository Manager and via OSSRH to the Cen-
tral Repository with good support for staging automation.

SBT Plugin https://github.com/xerial/sbt-sonatype
Gradle plugin to deploy components to Nexus Repository Manager and via OSSRH to the Central
Repository.

List Versions Jenkins Plugin https://github.com/USGS-CIDA/list-nexus-versions-plugin
Jenkins plugin to display available component versions.

Nexus Metadata Jenkins Plugin https://github.com/marcelbirkner/nexus-metadata-plugin
Jenkins plugin to add custom metadata with deployments to Nexus Repository Manager.

Artifact Promotion Jenkins Plugin https://github.com/jenkinsci/artifact-promotion-plugin
Jenkins plugin allowing you to promote components to different repositories in Nexus Repository
Manager OSS

Go Maven Poller https://github.com/ThoughtWorksInc/go-maven-poller
Package material plugin for Go that can poll a Nexus reposi for components.

Nexus Docker Image https://registry.hub.docker.com/u/conceptnotfound/sonatype-nexus/
Simple Docker image including Nexus Repository Manager OSS.

Nexus NPM Docker Image https://github.com/marcellodesales/nexus-npm-registry-docker-image

Docker Image of Nexus Repository Manager OSS with NPM support preconfigured

https://github.com/RiotGames/nexus_cli
https://github.com/stardust85/repositorytools/
https://github.com/jbraeuer/nexus-oss-rpms
https://github.com/tobrien/nexus-oss-deb
https://github.com/cescoffier/puppet-nexus
https://github.com/bmuschko/gradle-nexus-plugin
https://github.com/adaptivecomputing/plugins-gradle/tree/master/nexus-workflow
https://github.com/xerial/sbt-sonatype
https://github.com/USGS-CIDA/list-nexus-versions-plugin
https://github.com/marcelbirkner/nexus-metadata-plugin
https://github.com/jenkinsci/artifact-promotion-plugin
https://github.com/ThoughtWorksInc/go-maven-poller
http://www.thoughtworks.com/products/go-continuous-delivery
https://registry.hub.docker.com/u/conceptnotfound/sonatype-nexus/
https://github.com/marcellodesales/nexus-npm-registry-docker-image

Repository Management with Nexus 430 /440

26.5 Other Community Projects

Nexus Performance Testing Library https://github.com/sonatype/nexus-perf
Regression and stress test library for Nexus Repository Manager OSS from Sonatype.

Repository Management With Nexus https://github.com/sonatype/nexus-book

The source code for the book, which is the official documentation for Nexus Repository Manager
OSS and Nexus Repository Manager.

Nexus Book Examples https://github.com/sonatype/nexus-book-examples
Examples for the trial guide chapter of the book Repository Management with Nexus.

Nexus Introduction https://github.com/sonatype/nexus-introduction-presentation

Slides and examples to present about Nexus Repository Manager and Nexus Repository Manager
OSS at user groups or in similar settings.

26.6 Contributing

All of the projects listed in Section 26.5 are community efforts and open to your participation. If you

are aware of any other projects or would like to have your project listed here, please contact us at
books @sonatype.com.

https://github.com/sonatype/nexus-perf
https://github.com/sonatype/nexus-book
https://github.com/sonatype/nexus-book-examples
https://github.com/sonatype/nexus-introduction-presentation
mailto:books@sonatype.com

Repository Management with Nexus 431 /440

Appendix A

Contributing to the Nexus Documenta-
tion

The Nexus documentation is an open source project in which you can participate, if you have an idea for
documentation. Sonatype’s books include open writing efforts, and we see the value of the documentation
contributions the same as code contributions. If you are interested in our technology and would like to
contribute, please review this appendix.

Contributor License Agreement (CLA)

In order to contribute to the Nexus book, you will first need to fill out a contributor license agreement. This
is a legal agreement between you and Sonatype that ensures that your contributions are not covered by any
other legal requirements. Sonatype requires contributors to sign this agreement for all major contributions
larger than a single section. If your contribution consists of finding and fixing simple typos or suggesting
minor changes to the wording or sequence of a particular section, you can contribute these changes via
the Sonatype support site or directly as a pull request on the github project. If you contribution involves
direct contribution of a number of sections or chapters you will first need to sign our Contributor License
Agreement (CLA).

To download the CLA from the following URL: http://www.sonatype.org/SonatypeCLA.pdf

Once you have completed and signed this document, you can email the scan to books @sonatype.com.

http://www.sonatype.org/SonatypeCLA.pdf
mailto:books@sonatype.com

Repository Management with Nexus 432 /440

How to Contribute The source code for the book is hosted on GitHub in the nexus-book project. Instruc-
tions on tools used to author content as well as building the book and more can be found there.

https://github.com/sonatype/nexus-book

Repository Management with Nexus 433 /440

Appendix B

Copyright

Copyright © 2011-2015 Sonatype, Inc. All rights reserved.
Online version published by Sonatype, Inc.

Nexus™, Nexus Repository Manager OSS™, Nexus Repository Manager™, Nexus Repository Man-
ager+™ and all Nexus-related logos are trademarks or registered trademarks of Sonatype, Inc. in the
United States and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle, Inc.
in the United States and other countries.

IBM® and WebSphere® are trademarks or registered trademarks of International Business Machines,
Inc. in the United States and other countries.

Eclipse™ is a trademark of the Eclipse Foundation, Inc. in the United States and other countries.
Apache and the Apache feather logo are trademarks of The Apache Software Foundation.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

Repository Management with Nexus 434 /440

trademarks. Where those designations appear in this book, and Sonatype, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

Repository Management with Nexus 435/ 440

Appendix C

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
United States license. For more information about this license, see http://creativecommons.org/licenses/-
by-nc-nd/3.0/us/. You are free to share, copy, distribute, display, and perform the work under the following
conditions:

* You must attribute the work to Sonatype, Inc. with a link to http://www.sonatype.com.
* You may not use this work for commercial purposes.

* You may not alter, transform, or build upon this work.

If you redistribute this work on a web page, you must include the following link with the URL in the
about attribute listed on a single line (remove the backslashes and join all URL parameters):

<div xmlns:cc="http://creativecommons.org/ns#"
about="http://creativecommons.org/license/results-one?q _1=2&q_1=1\
&field_commercial=n&field_derivatives=n&field_ jurisdiction=us\
&field_format=StillImage&field worktitle=Repository%$3A+\Management\
&field_attribute_to_name=Sonatype%2C+Inc.\
&field_attribute_to_url=http%3A%2F%2Fwww.sonatype.com\
&field_sourceurl=http%$3A%2F$2Fwww.sonatype.com%$2Fbook\
&lang=en_US&language=en_US&n_questions=3">

<a rel="cc:attributionURL" property="cc:attributionName"
href="http://www.sonatype.com">Sonatype, Inc. /

<a rel="license"

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://www.sonatype.com

Repository Management with Nexus 436 / 440

href="http://creativecommons.org/licenses/by-nc-nd/3.0/us/">
CC BY-NC-ND 3.0
</div>

When downloaded or distributed in a jurisdiction other than the United States of America, this work
shall be covered by the appropriate ported version of Creative Commons Attribution-Noncommercial-
No Derivative Works 3.0 license for the specific jurisdiction. If the Creative Commons Attribution-
Noncommercial-No Derivative Works version 3.0 license is not available for a specific jurisdiction, this
work shall be covered under the Creative Commons Attribution-Noncommercial-No Derivate Works ver-
sion 2.5 license for the jurisdiction in which the work was downloaded or distributed. A comprehensive
list of jurisdictions for which a Creative Commons license is available can be found on the Creative
Commons International web site at http://creativecommons.org/international.

If no ported version of the Creative Commons license exists for a particular jurisdiction, this work shall be
covered by the generic, unported Creative Commons Attribution-Noncommercial-No Derivative Works
version 3.0 license available from http://creativecommons.org/licenses/by-nc-nd/3.0/.

C.1 Creative Commons BY-NC-ND 3.0 US License

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPY-
RIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AU-
THORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE
CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED
HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in
which the Work in its entirety in unmodified form, along with one or more other contributions,
constituting separate and independent works in themselves, are assembled into a collective
whole. A work that constitutes a Collective Work will not be considered a Derivative Work
(as defined below) for the purposes of this License.

http://creativecommons.org/international
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode

Repository Management with Nexus 437 / 440

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-
existing works, such as a translation, musical arrangement, dramatization, fictionalization,
motion picture version, sound recording, art reproduction, abridgment, condensation, or any
other form in which the Work may be recast, transformed, or adapted, except that a work
that constitutes a Collective Work will not be considered a Derivative Work for the purpose
of this License. For the avoidance of doubt, where the Work is a musical composition or
sound recording, the synchronization of the Work in timed-relation with a moving image
("synching") will be considered a Derivative Work for the purpose of this License.

c. "Licensor" means the individual, individuals, entity or entities that offers the Work under the
terms of this License.

d. "Original Author" means the individual, individuals, entity or entities who created the Work.
e. "Work" means the copyrightable work of authorship offered under the terms of this License.

f. "You" means an individual or entity exercising rights under this License who has not previ-
ously violated the terms of this License with respect to the Work, or who has received express
permission from the Licensor to exercise rights under this License despite a previous viola-
tion.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising
from fair use, first sale or other limitations on the exclusive rights of the copyright owner under
copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You
a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright)
license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to
reproduce the Work as incorporated in the Collective Works; and,

b. to distribute copies or phonorecords of, display publicly, perform publicly, and perform pub-
licly by means of a digital audio transmission the Work including as incorporated in Collective
Works.

The above rights may be exercised in all media and formats whether now known or hereafter devised.
The above rights include the right to make such modifications as are technically necessary to exercise the
rights in other media and formats, but otherwise you have no rights to make Derivative Works. All rights
not expressly granted by Licensor are hereby reserved, including but not limited to the rights set forth in
Sections 4(d) and 4(e).

1. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by the
following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work
only under the terms of this License, and You must include a copy of, or the Uniform Resource

Repository Management with Nexus 438 /440

Identifier for, this License with every copy or phonorecord of the Work You distribute, publicly
display, publicly perform, or publicly digitally perform. You may not offer or impose any
terms on the Work that restrict the terms of this License or the ability of a recipient of the
Work to exercise the rights granted to that recipient under the terms of the License. You may
not sublicense the Work. You must keep intact all notices that refer to this License and to the
disclaimer of warranties. When You distribute, publicly display, publicly perform, or publicly
digitally perform the Work, You may not impose any technological measures on the Work that
restrict the ability of a recipient of the Work from You to exercise the rights granted to that
recipient under the terms of the License. This Section 4(a) applies to the Work as incorporated
in a Collective Work, but this does not require the Collective Work apart from the Work itself
to be made subject to the terms of this License. If You create a Collective Work, upon notice
from any Licensor You must, to the extent practicable, remove from the Collective Work any
credit as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner
that is primarily intended for or directed toward commercial advantage or private monetary
compensation. The exchange of the Work for other copyrighted works by means of digital file-
sharing or otherwise shall not be considered to be intended for or directed toward commercial
advantage or private monetary compensation, provided there is no payment of any monetary
compensation in connection with the exchange of copyrighted works.

c. If You distribute, publicly display, publicly perform, or publicly digitally perform the Work
(as defined in Section 1 above) or Collective Works (as defined in Section 1 above), You must,
unless a request has been made pursuant to Section 4(a), keep intact all copyright notices for
the Work and provide, reasonable to the medium or means You are utilizing: (i) the name
of the Original Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original
Author and/or Licensor designate another party or parties (e.g., a sponsor institute, publishing
entity, journal) for attribution ("Attribution Parties") in Licensor’s copyright notice, terms
of service or by other reasonable means, the name of such party or parties; the title of the
Work if supplied; to the extent reasonably practicable, the Uniform Resource Identifier, if
any, that Licensor specifies to be associated with the Work, unless such URI does not refer
to the copyright notice or licensing information for the Work. The credit required by this
Section 4(c) may be implemented in any reasonable manner; provided, however, that in the
case of a Collective Work, at a minimum such credit will appear, if a credit for all contributing
authors of the Collective Work appears, then as part of these credits and in a manner at least
as prominent as the credits for the other contributing authors. For the avoidance of doubt, You
may only use the credit required by this clause for the purpose of attribution in the manner
set out above and, by exercising Your rights under this License, You may not implicitly or
explicitly assert or imply any connection with, sponsorship or endorsement by the Original
Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of the Work,
without the separate, express prior written permission of the Original Author, Licensor and/or
Attribution Parties.

2. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR

Repository Management with Nexus 439/ 440

OFFERS THE WORK AS-IS AND ONLY TO THE EXTENT OF ANY RIGHTS HELD IN THE
LICENSED WORK BY THE LICENSOR. THE LICENSOR MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY
OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MARKETABIL-
ITY, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR
THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF AB-
SENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT AP-
PLY TO YOU.

1. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN
NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARIS-
ING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

2. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach
by You of the terms of this License. Individuals or entities who have received Collective
Works (as defined in Section 1 above) from You under this License, however, will not have
their licenses terminated provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the dura-
tion of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves
the right to release the Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to withdraw this License (or
any other license that has been, or is required to be, granted under the terms of this License),
and this License will continue in full force and effect unless terminated as stated above.

3. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work (as defined in Section 1 above)
or a Collective Work (as defined in Section 1 above), the Licensor offers to the recipient a
license to the Work on the same terms and conditions as the license granted to You under this
License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not
affect the validity or enforceability of the remainder of the terms of this License, and with-
out further action by the parties to this agreement, such provision shall be reformed to the
minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to
unless such waiver or consent shall be in writing and signed by the party to be charged with
such waiver or consent.

Repository Management with Nexus 440/ 440

d. This License constitutes the entire agreement between the parties with respect to the Work
licensed here. There are no understandings, agreements or representations with respect to
the Work not specified here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be modified without the
mutual written agreement of the Licensor and You.

C.2 Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with
the Work. Creative Commons will not be liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special, incidental or consequential damages arising
in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative Commons has
expressly identified itself as the Licensor hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL,
Creative Commons does not authorize the use by either party of the trademark "Creative Commons"
or any related trademark or logo of Creative Commons without the prior written consent of Creative
Commons. Any permitted use will be in compliance with Creative Commons’ then-current trademark
usage guidelines, as may be published on its website or otherwise made available upon request from time
to time. For the avoidance of doubt, this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

http://creativecommons.org/

	Introducing Nexus Repository Manager
	Concepts
	Installing and Running Nexus Repository Manager
	Configuring Maven and Other Build Tools
	Using the User Interface
	Configuring Nexus Repository Manager
	Smart Proxy
	LDAP Integration
	Atlassian Crowd Support
	Procurement Suite
	Improved Releases with Staging
	Repository Health Check
	Managing Maven Settings
	OSGi Bundle Repositories
	P2 Repositories
	.NET Package Repositories with NuGet
	Node Packaged Modules and npm Registries
	Ruby, RubyGems and Gem Repositories
	RPM Packages and YUM Repositories
	Site Repositories
	Repository Management Best Practises
	Nexus Repository Manager Plugins
	Migrating to Nexus Repository Manager
	Configuring Secure Socket Layer SSL
	Evaluating Step by Step
	Community
	Contributing to the Nexus Documentation
	Copyright
	Creative Commons License

